High Q^2 Neutral Current in Polarised $e^\pm p$ Collisions at HERA II

Andrei Nikiforov
MPI for Physics, Munich

On Behalf of the H1 Collaboration

DIS 2006, Tsukuba, Japan. 21 April 2006
Longitudinally Polarised Lepton Beam at HERA II

- Sokolov-Ternov effect → lepton beam has transverse polarisation
- Spin rotator before/after the H1/ZEUS/HERMES detectors

Polarisation:

\[P_e = \frac{N_{RH} - N_{LH}}{N_{RH} + N_{LH}}, \]

\(N_{RH} (N_{LH}) \): number of RH(LH) leptons in the beam

- Polarisation built-up time \(\sim \) 30 minutes
- Monitoring by two independent compton polarimeters
Data Sets

“Right handed” (RH) for $P_e > 0$
“Left handed” (LH) for $P_e < 0$

2003-04 e^+p

<table>
<thead>
<tr>
<th></th>
<th>Lumi, pb$^{-1}$</th>
<th>Polarisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>26.9</td>
<td>(+33.6±0.6)$%$</td>
</tr>
<tr>
<td>LH</td>
<td>20.7</td>
<td>(-40.2±1.1)$%$</td>
</tr>
</tbody>
</table>

2005 e^-p

<table>
<thead>
<tr>
<th></th>
<th>Lumi, pb$^{-1}$</th>
<th>Polarisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>29.6</td>
<td>(+37.0±1.3)$%$</td>
</tr>
<tr>
<td>LH</td>
<td>68.6</td>
<td>(-27.0±1.8)$%$</td>
</tr>
</tbody>
</table>

- HERA II lumi ~ 150 pb$^{-1}$ (HERA I ~ 120 pb$^{-1}$)
- HERA II e^-p lumi six times larger than HERA I e^-p
Neutral Current (NC) DIS: \(e^\pm p \rightarrow e^\pm X \)**

Kinematics:
- \(Q^2 = -(k - k')^2 = -q^2 \)
 - virtuality of \(\gamma^*, Z_0 \)
- \(x = Q^2 / 2(Pq) \) momentum fraction of proton carried by struck quark
- \(y = (Pq) / (Pk) \) inelasticity
- \(Q^2 = sxy \)

DIS is sensitive probe of the proton structure
- **High \(Q^2 \):** Probe with small spatial resolution \(\lambda \sim 1/\sqrt{(Q^2)} \), resolve 1/1000\(^{th}\) size of proton
- **QCD, PDFs**
- **Probe EW dynamics**
NC Cross Section

- NC DIS cross section:
 \[
 \frac{d^2\sigma_{NC}(e^\pm p)}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} [Y_+ \tilde{F}_2 \mp Y_- x\tilde{F}_3 - y^2 \tilde{F}_L], \quad Y_\pm = 1 \pm (1 - y)^2
 \]

 Dominant contribution
 Contribution only important at high \(Q^2 \)
 Sign changes in \(e^+ / e^- \)
 Sizeable only at high \(y \)

- NC reduced cross section:
 \[
 \tilde{\sigma}_{NC}(e^\pm p) = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{d^2\sigma_{NC}(e^\pm p)}{dx dQ^2} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x\tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L
 \]

- In QPM:
 \[
 F_2(x, Q^2) = x \sum A_i(q_i + \bar{q}_i) \\
xF_3(x, Q^2) = x \sum B_i(q_i - \bar{q}_i) \\
F_L = F_2 - 2xF_1 = 0 (Callan-Gross relation)
 \]
NC structure functions, \tilde{F}_2 and xF_3, can be decomposed as:

$$\tilde{F}_2 = F_2 - (v_e \pm Pe a_e) \chi_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 \pm 2Pe v_e a_e) \chi_Z^2 F_2^Z,$$

$$xF_3 = - (a_e \pm Pe v_e) \chi_Z xF_3^{\gamma Z} + (2v_e a_e \pm Pe (v_e^2 + a_e^2)) \chi_Z^2 xF_3^Z,$$

where: “+” for $e^+ p$, “-” for $e^- p$

Polarisation dependence:

- **Dominating e/m contribution** is independent of P_e
- **Polarised contribution** appears at high Q^2, mainly due to γZ interference
Neutral Current Event in the H1 Detector

LAr calorimeter:

- High granularity 45000 cells
- $\frac{\sigma(E)}{E} = \frac{12\%}{\sqrt{E/\text{GeV}}}$ e/m energy
- $\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E/\text{GeV}}}$ had energy

- Electron produces isolated and compact energy deposition
- Identified using shape and size of e/m shower profile
- Balanced by hadronic final state in φ
Electron energy (E'_e), scattering angle (θ_e), etc are described by MC

Low background level. Main contributions: photoproduction (γp), QED compton, lepton-pair production
2003-04 $e^+ p \frac{d\sigma}{dQ^2}$ and RH/LH

Neutral Current

\[\frac{d\sigma_{NC}}{dQ^2} (pb GeV^{-2}) \]

- $P_e = +33.6\%$
- $y < 0.9$

\[\frac{d\sigma_{NC}}{dQ^2} (pb GeV^{-2}) \]

- $P_e = -40.2\%$
- $y < 0.9$

- $\frac{d\sigma_{e^+p}}{dQ^2} (RH, LH)$ and RH/LH
- Rise of the ratio RH/LH as function of Q^2
- Polarisation asymmetry is not yet significant

Andrei Nikiforov
MPI for Physics, Munich
High Q^2 Neutral Current in Polarised $e^\pm p$ Collisions at HERA
2005 $e^- p \, d\sigma / dQ^2$ and RH/LH

- $d\sigma^{e^- p} / dQ^2$ (RH, LH) and RH/LH
- Drop of the ratio RH/LH as function of Q^2
- Indication of the polarisation effect on NC cross sections, although significance is moderate

Andrei Nikiforov
MPI for Physics, Munich

High Q^2 Neutral Current in Polarised $e^\pm p$ Collisions at HERA
Polarisation Asymmetry in NC: Combination of Results

\[\sigma_{NC}^{e\pm p} \sim \cdots F_2 + \cdots (-v_e \mp P_e a_e) F_2^Z \mp \cdots a_e x F_3^Z \]

Neutral Current

\[R = \frac{\frac{d\sigma}{dQ^2}(e^+ p, P_e = +33.6\%) + \frac{d\sigma}{dQ^2}(e^- p, P_e = -27.0\%)}{\frac{d\sigma}{dQ^2}(e^+ p, P_e = -40.2\%) + \frac{d\sigma}{dQ^2}(e^- p, P_e = +37.0\%)} \]

- H1 Preliminary
- SM (H1 PDF 2000)
- Norm. uncert.
Neutral Current at High x and xF_3

- **HERA II unpolarised cross-sections**

$$\tilde{\sigma}_{e^\pm p} = \tilde{F}_2 - \frac{y^2}{y_+} \tilde{F}_L \mp \frac{y_-}{y_+} x \tilde{F}_3$$

- xF_3 for HERA I+II:

$$x \tilde{F}_3 = \frac{y_+}{2y_-} (\tilde{\sigma}^{e^+ p} - \tilde{\sigma}^{e^- p})$$

$$xF_3 = -ae \frac{\kappa w Q^2}{Q^2 + M_Z^2} x F_3^Z + (2v_e a_e) \left(\frac{\kappa w Q^2}{Q^2 + M_Z^2} \right) x F_3^Z$$
Structure Function $xF_3^{\gamma Z}$

$$xF_3^{\gamma Z} = x\tilde{F}_3/\left(\frac{-ae\kappa_w}{Q^2 + M_Z^2}\right)$$
Summary

- HERA II NC cross sections for 2003-04 e^+p and 2005 e^-p interactions with longitudinally polarised lepton beams are measured.
- Polarisation effects on NC cross sections are visible but significance is moderate.
- The structure functions $\tilde{x}F_3$ and $xF_3^{\gamma Z}$ are determined using HERA I and HERA II with improved statistical precision.
- Data is well described by Standard Model.