1 Longitudinal Λ and $\bar{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results

2 Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results

3 Spontaneous transverse hyperon polarization
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P_S^Λ w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

\[
\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_S^\Lambda \cos \theta \right)
\]

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P_Λ^S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_\Lambda^S \cos \theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P_Λ^S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_\Lambda^S \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \to p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P^Λ_S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{dcos\theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P^\Lambda_S \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P^Λ_S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha^\Lambda_P S \cos \theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha^\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
The Experimental Setup

Fixed target experiment @ CERN SPS
- 2-stage spectrometer
- longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.
The Experimental Setup

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- Longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.
The Experimental Setup

Fixed target experiment @ CERN SPS
- 2-stage spectrometer
- Longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
The Experimental Setup

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- Longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized ^6LiD target

COMPASS is able to study all aspects of Λ polarization.

COMPASS Layout 2003 (topview)
The Experimental Setup

- Fixed target experiment @ CERN SPS
 - 2-stage spectrometer
 - Longitudinally polarized 160 GeV/c μ^+-beam
 - Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.
Outline

1. **Longitudinal Λ and $\bar{\Lambda}$ polarization**
 - Introduction
 - Extraction Method
 - Results

2. **Λ production from transversely polarized target**
 - Λ polarization and transversity
 - Extraction method
 - Results

3. **Spontaneous transverse hyperon polarization**
Longitudinal Λ and Λ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Introduction

Extraction Method

Results

Long. Λ Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process $q^- \rightarrow \Lambda^+$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta \bar{s}(x)$

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Long. \(\Lambda \) Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process \(q^- \rightarrow \Lambda^\rightarrow \)
- \(\Lambda \) spin structure
- Test of \(q\bar{q} \) symmetry of strange sea in nucleon:
 - \(s(x) \) vs. \(\bar{s}(x) \)
 - \(\Delta s(x) \) vs. \(\Delta \bar{s}(x) \)
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Introduction

Extraction Method

Results

Long. Λ Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process $q \rightarrow \rightarrow \Lambda \Rightarrow$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta\bar{s}(x)$
Long. Λ Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process $q^{-} \rightarrow \Lambda^{+}$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta \bar{s}(x)$

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Introduction
Extraction Method
Results

Long. Λ Polarization in Current Fragmentation Region

Accessible physics
- Study of spin transfer process $q \rightarrow \rightarrow \Lambda \Rightarrow$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 $s(x)$ vs. $\bar{s}(x)$
 $\Delta s(x)$ vs. $\Delta\bar{s}(x)$

Boris Grube, TU München
Λ Polarization Measurements at COMPASS
Assuming $x_F > 0$ and quark fragmentation

$$P_L^\Lambda = \frac{\sum_q e_q^2 \left[P_B \cdot D_L(y) \cdot q(x_{Bj}) + f \cdot P_N \cdot \Delta q(x_{Bj}) \right] \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \left[q(x_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta q(x_{Bj}) \right] \hat{D}_{\Lambda/q}(z_h)}$$

with $D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}$ longitudinal depolarization factor

- P_B beam polarization $\approx -76\%$
- f target dilution factor ≈ 0.45
- P_N target polarization $\approx 50\%$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/q}(z_h)$

averaging over target polarization $\implies P_N = 0$
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation

\[
P_L^\Lambda = \frac{\sum q e_q^2 \left[P_B \cdot D_L(y) \cdot q(x_{Bj}) + f \cdot P_N \cdot \Delta q(x_{Bj}) \right] \Delta D_{\Lambda/q}(z_h)}{\sum q e_q^2 \left[q(x_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta q(x_{Bj}) \right] \hat{D}_{\Lambda/q}(z_h)}
\]

with $D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}$ longitudinal depolarization factor

- P_B beam polarization $\approx -76\%$
- f target dilution factor ≈ 0.45
- P_N target polarization $\approx 50\%$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/q}(z_h)$

averaging over target polarization $\implies P_N = 0$
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$P^\Lambda_L = P_B \cdot D_L(y) \cdot \frac{\sum_q e^2_q q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum_q e^2_q q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with

$$D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}$$

longitudinal depolarization factor

P_B beam polarization $\approx -76\%$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 0$
 J. Ellis et al., EPJ C25, 603 (2002)

- About 40% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$P_L^\Lambda = P_B \cdot D_L(y) \frac{\sum_q e_q^2 q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with $D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}$ longitudinal depolarization factor

P_B beam polarization $\approx -76\%$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 0$
 J. Ellis et al., EPJ C25, 603 (2002)

- About 40\% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$P_L^\Lambda = P_B \cdot D_L(y) \frac{\sum_q e_q^2 q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with

$$D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}$$

longitudinal depolarization factor

P_B beam polarization $\approx -76\%$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 0$
 J. Ellis et al., EPJ C25, 603 (2002)
- About 40% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λs from fit parameter
 \implies background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Longitudinal polarization

- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction

from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization

- **Analyzer** along virtual photon direction
- Angular distribution of proton *w.r.t.* γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons *not* required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction

from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization

- **Analyzer** along virtual photon direction
- Angular distribution of proton *w.r.t. γ* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons **not required**
- Subdivision of sample into **bins in cos θ**
 - For each bin invariant mass histogram
 - Fit of histogram → number of Λs from fit parameter
 → background corrected angular distribution

Acceptance correction

from MC simulations (LEPTO) of unpolarized Λ(Λ) decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into **bins in $\cos\theta$**
- For each bin **invariant mass histogram**
 - Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λs from fit parameter
 \implies background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization

- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction

from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K^0_S
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$
Background contributions

- **No particle ID used in \(\Lambda \) selection**
- Kinematically indistinguishable \(K_s^0 \)
- Combinatorial background
- \(e^+e^- \) pairs from \(\gamma \) conversion

Kaon Background from MC

- Kaon distribution \(K(m_{p\pi^-}) \)
- Data are fitted with \(\text{Gauss}(x) + aK(x) + c_0 + c_1 x \)
Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$
Background contributions

- No particle ID used in \(\Lambda \) selection
- Kinematically indistinguishable \(K^0 \)
- Combinatorial background
- \(e^+e^- \) pairs from \(\gamma \) conversion

Kaon Background from MC

- Kaon distribution \(K(m_{p\pi^-}) \)
- Data are fitted with \(\text{Gauss}(x) + aK(x) + c_0 + c_1x \)
MC improved Background Description

Background contributions

- **No particle ID** used in \(\Lambda \) selection
- **Kinematically indistinguishable** \(K_S^0 \)
- **Combinatorial** background
- \(e^+e^- \) pairs from \(\gamma \) conversion

Kaon Background from MC

- Kaon distribution \(K(m_{p\pi^-}) \)
- Data are fitted with \(\text{Gauss}(x) + aK(x) + c_0 + c_1x \)
MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$

COMPASS 2003, Preliminary

Fit result
Total background
Kaons background

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$

MC improved Background Description

<table>
<thead>
<tr>
<th>$-1.0 \leq \cos \theta_x < -0.8$</th>
<th>$-0.8 \leq \cos \theta_x < -0.6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$-0.6 \leq \cos \theta_x < -0.4$</th>
<th>$-0.4 \leq \cos \theta_x < -0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$-0.2 \leq \cos \theta_x < -0.0$</th>
<th>$-0.0 \leq \cos \theta_x < 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$0.2 \leq \cos \theta_x < 0.4$</th>
<th>$0.4 \leq \cos \theta_x < 0.6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$0.6 \leq \cos \theta_x < 0.8$</th>
<th>$0.8 \leq \cos \theta_x < 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$

COMPASS 2003, Preliminary

Fit result
Total background
Kaons background
Kinematics of Λ Prod. (2003, $Q^2 > 1 \text{ GeV}^2$)

Total statistics 2003

- $31,000 \Lambda$s
- $18,000 \bar{\Lambda}$s

Mean values

- $\langle x_{Bj} \rangle = 0.0283$
- $\langle x_F \rangle = 0.23$
- $\langle y \rangle = 0.48$
- $\langle z \rangle = 0.29$
- $\langle Q^2 \rangle = 3.55 \text{ GeV}^2$
- $\langle W \rangle = 11.7 \text{ GeV}$
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Kinematics of Λ Prod. (2003, $Q^2 > 1 \text{ GeV}^2$)

Total statistics 2003
31,000 Λs
18,000 $\bar{\Lambda}$s

Mean values

$\langle x_{Bj} \rangle = 0.0283$
$\langle x_F \rangle = 0.23$
$\langle y \rangle = 0.48$
$\langle z \rangle = 0.29$

$\langle Q^2 \rangle = 3.55 \text{ GeV}^2$
$\langle W \rangle = 11.7 \text{ GeV}$
y- and x_{Bj}-Dependence of long. Pol., $Q^2 > 1 \text{ GeV}^2$

Systematic errors $< 5\%$
z- and W^2-Dependence of long. Pol., $Q^2 > 1 \text{ GeV}^2$

Systematic errors < 5 %
Outline

1. Longitudinal Λ and $\bar{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results

2. Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results

3. Spontaneous transverse hyperon polarization
\(\Lambda \) production from transversely polarized target

Transversely polarized target

Measured process: \(\mu N^\uparrow \rightarrow \mu' \Lambda^\uparrow X \)

Underlying elementary QED process: \(\gamma^* q^\uparrow \) scattering

Transverse \(\Lambda \) polarization gives information about initial transverse quark polarization \(\Delta_T q(x_B) \) in nucleon

Boris Grube, TU München
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Λ polarization and transversity

Extraction method

Results

Λ production from transversely polarized target

Transversely polarized target

Measured process: $\mu \ N^{\uparrow} \rightarrow \mu' \ \Lambda^{\uparrow} \ X$

Underlying elementary QED process: $\gamma^* q^{\uparrow}$ scattering

Transverse Λ polarization gives information about initial transverse quark polarization $\Delta_T q(x_{Bj})$ in nucleon

Boris Grube, TU München
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Λ polarization and transversity

Extraction method

Results

Λ production from transversely polarized target

Transversely polarized target

Measured process: $\mu \, N^{\uparrow} \rightarrow \mu' \, \Lambda^{\uparrow} \, X$

Underlying elementary QED process: $\gamma^* q^{\uparrow}$ scattering

Quark scattering plane

Lepton scattering plane (x,z)

Transverse Λ polarization gives information about initial transverse quark polarization $\Delta_T q(x_B)$ in nucleon
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Λ polarization and transversity

Extraction method

Results

Λ production from transversely polarized target

Transversely polarized target

Measured process: $\mu \ N^{\uparrow} \rightarrow \mu' \ \Lambda^{\uparrow} \ X$

Underlying elementary QED process: $\gamma^* q^{\uparrow}$ scattering

Quark scattering plane

Lepton scattering plane (x,z)

Transverse Λ polarization gives information about initial transverse quark polarization $\Delta T q(x_{Bj})$ in nucleon
Λ polarization and Transversity

Assuming $x_F > 0$ and quark fragmentation

$$P_T^\Lambda = f \cdot P_N \cdot D_T(y) \frac{\sum q e_q^2 \Delta_T q(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with $D_T(y) = \frac{2(1-y)}{1+(1-y)^2}$ transverse depolarization factor

f target dilution factor ≈ 0.45

P_N target polarization $\approx 50\%$

Chiral-odd partner of $\Delta_T q(x_{Bj})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda\uparrow/q\uparrow}(z_h) - D_{\Lambda\downarrow/q\uparrow}(z_h)$$

both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
Assuming $x_F > 0$ and quark fragmentation

$$P_T^\Lambda = f \cdot P_N \cdot D_T(y) \frac{\sum_q e_q^2 \Delta_T q(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with

$$D_T(y) = \frac{2(1-y)}{1+(1-y)^2}$$

transverse depolarization factor

$$f$$ target dilution factor ≈ 0.45

$$P_N$$ target polarization $\approx 50\%$

Chiral-odd partner of $\Delta_T q(x_{Bj})$: **transversity fragmentation function**

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda/\uparrow\downarrow}/q\uparrow(z_h) - D_{\Lambda/\downarrow\uparrow}/q\uparrow(z_h)$$

both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
Assuming $x_F > 0$ and quark fragmentation

$$P_T^\Lambda = f \cdot P_N \cdot D_T(y) \frac{\sum_q e_q^2 \Delta_T q(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with $D_T(y) = \frac{2(1-y)}{1+(1-y)^2}$ transverse depolarization factor

- f target dilution factor ≈ 0.45
- P_N target polarization $\approx 50\%$

Chiral-odd partner of $\Delta_T q(x_{Bj})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda\uparrow/q}\uparrow(z_h) - D_{\Lambda\downarrow/q}\uparrow(z_h)$$

- both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
2 target cells, each 60 cm long

0.5 T magnetic dipole field sustains transverse polarization
COMPASS Polarized Target

- 2 target cells, each 60 cm long
- 0.5 T magnetic dipole field sustains transverse polarization

COMPASS Acceptance (180 mrad)
Dilution refrigerator (T ~ 50 mK)
Superconducting solenoid (2.5 T)
SMC Acceptance (70 mrad)

3He-Precooler

6LiD target cells
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry

Assumptions
- Constant target polarization: \(P_N^{(1)} = P_N^{(2)} \)
- Constant acceptance: \(A_1^+(\theta) = A_2^- (\theta) \) and \(A_1^- (\theta) = A_2^+ (\theta) \)
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution \(\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta \)

Assumptions
- Constant target polarization: \(P_N^{(1)} = P_N^{(2)} \)
- Constant acceptance: \(A_1^+(\theta) = A_2^- (\theta) \) and \(A_1^- (\theta) = A_2^+ (\theta) \)
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

Boris Grube, TU München
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_{1+}^+(\theta) = A_{2-}^-(\theta)$ and $A_{1-}^-(\theta) = A_{2+}^+(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P^\Lambda_T \cos \theta$

Assumptions
- Constant target polarization: $P^{(1)}_N = P^{(2)}_N$
- Constant acceptance: $A^+_1(\theta) = A^-_2(\theta)$ and $A^-_1(\theta) = A^+_2(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using **bin-by-bin method**

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from **two target cells** and **two polarization configurations**
- **Acceptance corrected** angular distribution \(\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta \)

Assumptions
- **Constant target polarization**: \(P_N^{(1)} = P_N^{(2)} \)
- **Constant acceptance**: \(A_1^+(\theta) = A_2^-(\theta) \) and \(A_1^-\theta(\theta) = A_2^+\theta(\theta) \)
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-\theta(\theta) = A_2^+(\theta)$
Overall available Statistics (2002-03, $Q^2 > 1$ GeV2)

All 2002+2003 transversity data

Number of Λ: ~20000

$Q^2 > 1$ (GeV/c)2

$0.1 < y < 0.9$

Boris Grube, TU München
x_{Bj}-Dependence of Transv. Λ Polarization, $Q^2 > 1 \text{ GeV}^2$

All 2002+2003 transversity data

$Q^2 > 1 \text{ (GeV/c)}^2$

$0.1 < y < 0.9$

Preliminary

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Outline

1. Longitudinal \(\Lambda \) and \(\bar{\Lambda} \) polarization
 - Introduction
 - Extraction Method
 - Results

2. \(\Lambda \) production from transversely polarized target
 - \(\Lambda \) polarization and transversity
 - Extraction method
 - Results

3. Spontaneous transverse hyperon polarization
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- Parity conservation
- Polarization **transverse to production plane**

Naïve expectation

- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^\Lambda = -28 \pm 8 \%$
 in p Be \implies $\Lambda \uparrow X @ p_{\text{Beam}} = 300$ GeV/c
- No model is able to explains all experimental data
- Only few data from photo-production
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

Parity conservation
Polarization transverse to production plane

Naïve expectation

- **High energy** \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^\Lambda = -28 \pm 8 \%$
in p Be $\rightarrow \Lambda^\uparrow X @ p_{\text{Beam}} = 300 \text{ GeV/c}$
- No model is able to explains all experimental data
- Only few data from photo-production

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- Parity conservation
- Polarization transverse to production plane

Naïve expectation

- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^\Lambda = -28 \pm 8 \%$
 in p Be $\rightarrow \Lambda^\uparrow X$ @ $p_{\text{Beam}} = 300$ GeV/c
- No model is able to explain all experimental data
- Only few data from photo-production
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized inclusive reactions**

- Parity conservation
 - Polarization **transverse to production plane**

Naïve expectation

- **High energy** \implies large number of production channels:
 - comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of **sizeable transverse polarization** $P_T^\Lambda = -28 \pm 8\%$
 - in p Be $\rightarrow \Lambda^\uparrow X @ p_{\text{Beam}} = 300$ GeV/c
- **No model** is able to explains all experimental data
- Only few data from photo-production
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

Parity conservation
Polarization transverse to production plane

Naïve expectation
- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab
- Discovery of sizeable transverse polarization $P_T^\Lambda = -28 \pm 8\%$
 - in p Be $\rightarrow \Lambda^+ X @ p_{\text{Beam}} = 300\text{ GeV/c}$
- No model is able to explains all experimental data
- Only few data from photo-production
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

Parity conservation
Polarization transverse to production plane

Naïve expectation

- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of **sizeable transverse polarization** $P_T^\Lambda = -28 \pm 8\%$
 in $p\text{ Be} \rightarrow \Lambda^\uparrow X @ p_{\text{Beam}} = 300 \text{ GeV/c}$
- **No model** is able to explains all experimental data
- Only few data from photo-production
Hyperon Production in unpolarized Reaction

- **Inclusive hyperon production** in reaction $\mu N \longrightarrow \mu' \Lambda \uparrow X$
- **Quasi-real** virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{ GeV}^2$
- Analyzer along production plane normal
Hyperon Production in unpolarized Reaction

- **Inclusive hyperon production** in reaction $\mu N \rightarrow \mu' \Lambda \uparrow X$
- **Quasi-real** virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{ GeV}^2$
- Analyzer along production plane normal
Hyperon Production in unpolarized Reaction

- **Inclusive hyperon production** in reaction $\mu N \rightarrow \mu' \Lambda X$
- **Quasi-real** virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{ GeV}^2$
- **Analyzer** along production plane normal

![Diagram of hyperon production and decay](image-url)
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram with K^0 mass

- **Full two-dimensional fit** in $(m_{p\pi^-, m_{\pi^+\pi^-}})$ plane

- **Extraction of false K^0 background polarization** in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram **with** K^0 mass

- **Full two-dimensional fit** in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane

- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- Expansion of Λ invariant mass histogram with K^0 mass
- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram with K^0 mass

Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane

- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- Expansion of Λ invariant mass histogram with K^0 mass
- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- Small positive Λ polarization:
 \[P^\Lambda_T = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P^\bar{\Lambda}_T = -0.3 \pm 1.4 \text{(stat.)} \pm 1.8 \text{(sys.)} \%$

Work in progress

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive** Λ polarization:
 - $P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)}$ %
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)}$ %

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- Small positive Λ polarization:
 \[P_T^\Lambda = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: \[P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 \text{(stat.)} \pm 1.8 \text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive** Λ polarization:
 \[P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \%$

Work in progress

- 2002 sample only 10\% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive** Λ polarization:
 \[P_{T}^{\Lambda} = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: \[P_{T}^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- Small positive Λ polarization:
 \[P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \%$

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive** Λ polarization:
 \[P_\Lambda^T = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_{\bar{\Lambda}}^T = -0.3 \pm 1.4 \text{(stat.)} \pm 1.8 \text{(sys.)} \%$

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s

 - Small positive Λ polarization:
 \[P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value

- $\bar{\Lambda}$ unpolarized:
 \[P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 \text{(stat.)} \pm 1.8 \text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**
 \[P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: \[P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: \[1.6 \cdot 10^6 \Lambda$s and \[0.9 \cdot 10^6 \bar{\Lambda}s \]
- Analysis nearly finalized
Conclusions and Outlook

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003 transversity data sample**
- **Slight tendency to negative polarizations**
- **Small statistics**
- **Systematic effects are smaller than statistical errors**

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- **2003 data sample**
- Similar longitudinal polarization of \(\Lambda \) and \(\bar{\Lambda} \)
- Different production mechanism for \(\Lambda \) and \(\bar{\Lambda} \)

Transverse polarization transfer
- **2002 + 2003 transversity data sample**
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- **2003** data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- **2002 + 2003** transversity data sample
 - Slight tendency to negative polarizations
 - Small statistics
 - Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003 transversity data sample**
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and Λ̅
- Different production mechanism for Λ and Λ̅

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- **2003** data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- **2002 + 2003** transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses
Significant increase of statistics with 2004 data

Boris Grube, TU München
Λ Polarization Measurements at COMPASS
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- **Small positive Λ polarization, $\bar{\Lambda}$ unpolarized**
- **Analysis of 2002-04 data nearly finalized**
- **Detailed kinematical analysis (x_F, p_T, Q^2, y) possible**
- **First measurement of Ξ polarization in photo-production**

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching.
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- **Small positive \(\Lambda \) polarization, \(\bar{\Lambda} \) unpolarized**
- Analysis of **2002-04 data** nearly finalized
- Detailed kinematical analysis \((x_F, p_T, Q^2, y)\) possible
- First measurement of \(\Xi \) polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized

- Analysis of 2002-04 data nearly finalized
 - Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
 - First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching.
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002** data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of **2002-04** data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

Thank you!

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

Thank you!

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Kinematics of \(\bar{\Lambda} \) Prod. (2003, \(Q^2 > 1 \text{ GeV}^2 \))

Mean values

\[\langle x_{Bj} \rangle = 0.0258 \]
\[\langle x_F \rangle = 0.21 \]
\[\langle y \rangle = 0.51 \]
\[\langle z \rangle = 0.27 \]
\[\langle Q^2 \rangle = 3.50 \text{ GeV}^2 \]
\[\langle W \rangle = 12.1 \text{ GeV} \]
Angular Distributions (2002, $Q^2 > 1 \text{ GeV}^2$)

- K^0
- Λ
- $\bar{\Lambda}$

$\cos \Theta$

$w(\Theta)$

PRELIMINARY

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Spin Transfer to Λ and $\bar{\Lambda}$ (2002, $Q^2 > 1 \text{ GeV}^2$)

Spin transfer vs. x_F for various experiments:
- Λ, COMPASS
- Λ, HERMES
- Λ, NOMAD
- Λ, E665

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Selection cuts

- Primary vertex in target
- Secondary V^0 vertex outside of target
- Collinearity angle $\theta_{\text{col}} < 10 \text{ mrad}$
- V^0 decay daughters:
 - $p > 1 \text{ GeV}/c$ and
 - $p_T > 23 \text{ MeV}/c$
- V^0 momentum $p_{V^0} > 10 \text{ GeV}/c$
- DIS cut: $Q^2 > 1 \text{ GeV}^2$ and $0.2 < y < 0.9$
Kinematics of Λ Production

- Mean virtual photon transverse depolarization factor
 $\langle D_T(y) \rangle \approx 0.8$

- Majority of Λs produced in current fragmentation region $x_F > 0$

- Accessible x_{Bj} ranges
 - All Q^2: $10^{-5} < x_{Bj} < 1$
 - $Q^2 > 1$ GeV2: $3 \cdot 10^{-3} < x_{Bj} < 1$
x_{Bj}-Dependence of Transv. Λ Polarization, All Q^2

All 2002+2003 transversity data

0.1 < y < 0.9

Preliminary
Study of systematic Effects

- False K^0 polarization
- Subdivision of target cells into two halves
- Artificial change of orientation of target polarization: horizontal, random orientation

Systematic effects are smaller than statistical errors
Selection cuts

- Primary vertex in target
- Secondary V^0 vertex outside of target
- Collinearity angle $\theta_{\text{col}} < 10$ mrad
- V^0 decay daughters:
 - $p > 1$ GeV/c and
 - $p_T > 23$ MeV/c
- $0.1 < y < 0.9$
Dependence of \(\Lambda \) Pol. on \(x_F \) and \(p_T \) (2002 Data, all \(Q^2 \))

- Preliminary for \(x_F \) and \(p_T \) distributions.

\(P_y [\%] \) vs \(x_F \) and \(p_T [\text{GeV}/c] \) scatter plots.
Dependence of $\bar{\Lambda}$ Pol. on x_F and p_T (2002 Data, all Q^2)

Preliminary results show a dependence of $\bar{\Lambda}$ polarization on x_F and p_T. The plots illustrate the variation in polarization with changes in x_F and p_T. The data includes events from 0 to 4000 and 0 to 1600, respectively, in the x_F and p_T histograms.
Overall available Statistics (2002-04, all Q^2)

1.6 \cdot 10^6 Λs

0.9 \cdot 10^6 $\bar{\Lambda}$s