Recent developments in perturbative QCD

Gavin Salam
LPTHE, Universities of Paris VI and VII and CNRS

DIS 2006, Tsukuba, Japan,
20 April 2006
Concentrate on the effort to ‘get QCD in shape for LHC era’:

- Predicting multi-jet final-states:
 [because new-particle signatures involve many jets]
 - New tree level techniques
 - NLO and progress in 1-loop calculations

- Aiming for accuracy
 [because NLO theory is often far behind HERA/LEP precision]
 - NNLO jets: status & progress report
 - What NNLO is teaching us about QCD itself

- Other developments (mostly ’all-order’ QCD)

Some recently very active fields, not covered:

- Small-\(x\) saturation
- Generalised parton distributions – a field in its own right
 - talk by Diehl, + hep-ph/0512201
<table>
<thead>
<tr>
<th>Multi-jets</th>
<th>Tree level</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds to new physics</td>
<td>Many jets</td>
<td>A few jets</td>
</tr>
<tr>
<td>Low accuracy</td>
<td>Fair accuracy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNLO</th>
<th>NNLO Jets</th>
<th>Structure of PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision QCD</td>
<td>Status report</td>
<td>Mining for gold</td>
</tr>
</tbody>
</table>

Other results:
- MC
- Resummation
Heavy objects: multi-jet final-states

- Need to understand QCD multi-jet production (background)
- Max # jets: tree level ≤ 8 jets

MadEvent, AlpGen, Helac/Phegas
CompHEP, Grace, Amegic

<table>
<thead>
<tr>
<th># jets</th>
<th># events for 10 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$9 \cdot 10^8$</td>
</tr>
<tr>
<td>4</td>
<td>$7 \cdot 10^7$</td>
</tr>
<tr>
<td>5</td>
<td>$6 \cdot 10^6$</td>
</tr>
<tr>
<td>6</td>
<td>$3 \cdot 10^5$</td>
</tr>
<tr>
<td>7</td>
<td>$2 \cdot 10^4$</td>
</tr>
<tr>
<td>8</td>
<td>$2 \cdot 10^3$</td>
</tr>
</tbody>
</table>

$p_t(jet) > 60$ GeV, $\theta_{ij} > 30$ deg, $|y_{ij}| < 3$

Draggiotis, Kleiss & Papadopoulos '02

Multi-jet final-states

- Motivation, state of the art

Development in pQCD (G. Salam, LPTHE)
\[A^{\text{tree}}(1, 2, \ldots, n) = g^{n-2} \sum_{\text{perms}} \text{Tr}(T_1 T_2 \ldots T_n) \]

\(A^{\text{tree}}(1, 2, \ldots, n) \)

colour ordered amp.
\[A^{\text{tree}}(1, 2, \ldots, n) = g^{n-2} \sum_{\text{perms}} \hfill \underbrace{\text{Tr}(T_1 T_2 \ldots T_n)}_{\text{colour struct.}} \hfill \overbrace{A^{\text{tree}}(1, 2, \ldots, n)}_{\text{colour ordered amp.}} \]

<table>
<thead>
<tr>
<th>n</th>
<th># diags</th>
<th># col-ord diags</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>220</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>2485</td>
<td>133</td>
</tr>
<tr>
<td>8</td>
<td>34300</td>
<td>501</td>
</tr>
<tr>
<td>9</td>
<td>559405</td>
<td>1991</td>
</tr>
<tr>
<td>10</td>
<td>10525900</td>
<td>7335</td>
</tr>
</tbody>
</table>

non-planar | planar
\[A^{\text{tree}}(1, 2, \ldots, n) = g^{n-2} \sum_{\text{perms}} \text{Tr}(T_1 T_2 \ldots T_n) A^{\text{tree}}(1, 2, \ldots, n) \]

Tree level history

Maximal Helicity Violating (MHV)

Helicity amplitude: simplifies!

\[A^{\text{tree}}(- - + + \ldots) = \frac{i \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \ldots \langle n1 \rangle} \]

Parke & Taylor, Kunszt '85
Berends & Giele '88
\[A_{\text{tree}}(1, 2, \ldots, n) = g^{n-2} \sum_{\text{perms}} \frac{\text{Tr}(T_1 T_2 \ldots T_n)}{\text{colour struct.}} \frac{A_{\text{tree}} (1, 2, \ldots, n)}{\text{colour ordered amp.}} \]

Next to Maximal Helicity Violating (NMHV)

Kosower, '90
\[
\mathcal{A}^{\text{tree}}(1, 2, \ldots, n) = g^{n-2} \sum_{\text{perms}} \text{Tr}(T_1 T_2 \cdots T_n) \mathcal{A}^{\text{tree}}(1, 2, \ldots, n)
\]

Helicity amplitude: simplifies!

\[
\mathcal{A}^{\text{tree}}(+-+-+\ldots) = \frac{1}{F_{3,1}} \sum_{j=4}^{n-1} \langle 1| P_{2,j} P_{j+1,2} |3\rangle \frac{1}{P_{2,j}^2 P_{j+1,2}^2} \times \frac{\langle j+1 | j \rangle}{[2| P_{2,j} | j+1 \rangle \langle j | P_{j+1,2} | 2\rangle}
\]

Britto et al., hep-th/0503198

NEXT to Maximal Helicity Violating (NMHV) Just one of vast array of results obtained with new recursion (Twistor) techniques.
Build multi-leg amplitudes by joining sub-amplitudes.

Berends Giele (1988): Join smaller off-shell amplitudes through a (colour-stripped) three or four-gluon vertex:

\[
\Sigma_{\Sigma} = \sum_{j} \cdot \cdot \cdot + \sum_{j,k} \cdot \cdot \cdot + \cdot \cdot \cdot
\]

This is basis of many tree-level multi-particle Monte Carlo programs.

Why powerful?

Sub-amplitudes can be simplified before joining them together. Feynman diagrams, in contrast, can only be simplified after full calculation.
New recursion relations (twistors)

Britto-Cachazo-Feng (BCF): Join smaller sub-amplitudes by a propagator. Sub-amplitudes made on-shell by analytic continuation ($\pm z_j$) of two reference momenta:

Britto, Cachazo & Feng hep-th/0412265; idem. + Witten hep-th/0501052

Earlier (related) rules: Cachazo, Svrcek & Witten hep-th/0403047

Proof based on analytic structure of tree-graphs (they are a sum of poles in complex plane) — very general.

Simplicity lies in on-shellness of sub-amplitudes and the need for just a scalar propagator to join them.

Recursion tree-level highlights

Very active field: 200 articles in 2 years (∼50 by ‘QCD people’)

Tree level

- Specific compact results, including NNMHV
 - Hints of yet deeper simplifications
 - Kosower ’04; Roiban et al ’04
 - Luo & Wen ’05; Britto et al ’05

- Efficient (recursive) formulations
 - Bena, Bern, Kosower ’04
 - NB: recall ∃ ‘standard’ numerical methods for tree-level calculations:
 - Berends-Giele (’88); ‘Alpha’ (’95)

- Massless quarks, gluinos
 - Georgiou, Glover & Khoze ’04; Wu & Zhu ’04

- External Higgs boson
 - Dixon/Badger, Glover & Khoze ’04

- External weak boson (& fermions)
 - Bern, Forde, Kosower & Mastrolia ’04

- Collinear limits
 - Birthwright et al ’05

- Massive quarks, scalars
 - Forde & Kosower ’05; Schwinn & Weinzierl ’06
 - Ferrario, Rodrigo & Talavera ’06; Ozeren & Stirling ’06

Amazing progress in short time...
Recursion (Twistor) Papers

- "Twistor" papers
- " in hep-ph or by "Pheno" authors

Papers / month

Jan 04 Jul 04 Jan 05 Jul 05 Jan 06

Jan 04 to Jul 05: Increase in papers
Jan 06 to Jul 05: Stabilization of papers
Jan 06: Decrease in papers

Developments in pQCD (G. Salam, LPTHE) p.9/29
- Multi-jets
- Improving tree-level field theory
<table>
<thead>
<tr>
<th>Multi–jets</th>
<th>Tree level</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds to new physics</td>
<td>Many jets</td>
<td>A few jets</td>
</tr>
<tr>
<td></td>
<td>Low accuracy</td>
<td>Fair accuracy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNLO</th>
<th>NNLO Jets</th>
<th>Structure of PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision QCD</td>
<td>Status report</td>
<td>Mining for gold</td>
</tr>
</tbody>
</table>

Other results
- MC Resummation
Currently available

NLOJET++, MCFM, PHOX, ...

http://www.cedar.ac.uk/hepcode/

Experimenters’ priorities

1. $pp \to WW + \text{jet}$ Les Houches ’05
2. $pp \to H + 2 \text{ jets}$
 - Background to VBF Higgs production
3. $pp \to t\bar{t}b\bar{b}$
4. $pp \to t\bar{t} + 2 \text{ jets}$
 - Background to $t\bar{t}H$
5. $pp \to WW b\bar{b}$
6. $pp \to VV + 2 \text{ jets}$
 - Background to $WW \to H \to WW$
7. $pp \to V + 3 \text{ jets}$
 - General background to new physics
8. $pp \to VVV + \text{jet}$
 - Background to SUSY trilepton
<table>
<thead>
<tr>
<th>Experimenters’ priorities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. pp → WW + jet</td>
<td>Les Houches ’05</td>
</tr>
<tr>
<td>2. pp → H + 2 jets</td>
<td>▶ Background to VBF Higgs production</td>
</tr>
<tr>
<td>3. pp → t\bar{t}b\bar{b}</td>
<td></td>
</tr>
<tr>
<td>4. pp → t\bar{t} + 2 jets</td>
<td>▶ Background to t\bar{t}H</td>
</tr>
<tr>
<td>5. pp → WW b\bar{b}</td>
<td></td>
</tr>
<tr>
<td>6. pp → VV + 2 jets</td>
<td>▶ Background to</td>
</tr>
<tr>
<td></td>
<td>W W → H → W W</td>
</tr>
<tr>
<td>7. pp → V + 3 jets</td>
<td>▶ General background to new physics</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8. pp → VVV + jet</td>
<td>▶ Background to SUSY trilepton</td>
</tr>
</tbody>
</table>
Currently available
NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Theorist’s list (G. Heinrich)

- 2 → 3 (OK for a good student!)
 - pp → WW + jet
 - pp → VVV
 - pp → H + 2 jets
- 2 → 4 (Beyond today’s means)
 - pp → 4 jets
 - pp → t\bar{t} + 2 jets
 - pp → t\bar{t}b\bar{b}
 - pp → V + 3 jets
 - pp → VV + 2 jets
 - pp → VVV + jet
 - pp → WW bb

Experimenters’ priorities

1. pp → WW + jet Les Houches ’05
2. pp → H + 2 jets
 - Background to VBF Higgs production
3. pp → t\bar{t}b\bar{b}
4. pp → t\bar{t} + 2 jets
 - Background to t\bar{t}H
5. pp → WW b\bar{b}
6. pp → VV + 2 jets
 - Background to $W W \rightarrow H \rightarrow W W$
7. pp → V + 3 jets
 - General background to new physics
8. pp → VVV + jet
 - Background to SUSY trilepton
Developments in pQCD (G. Salam, LPTHE) p.12/29

— Multi-jets
— New methods @ 1-loop

NLO bottleneck: loop calc.

\[2 \to 3 \text{ @ NLO} \sim \begin{array}{c}
\text{2 } \to \text{ 4 @ Tree} \\
\text{2 } \to \text{ 3 @ 1-loop}
\end{array} + \text{ Tricks to cancel divergences}
\]

(dipole subtraction)

Traditionally: 1-loop for 2→3 proc. takes 1–2 years

Two ways of doing this more efficiently:

- Understand field theory better
- Get a computer to do most of the work for you

Enormous progress on this in past two years: ~ 200 articles

First full 2→4 (6-leg) result obtained this way
Multi-jets

New methods @ 1-loop

NLO bottleneck: loop calc.

 Traditionallu: 1-loop for $2 \rightarrow 3$ proc. takes 1–2 years

Two ways of doing this more efficiently:

- Understand field theory better

 Enormous progress on this in past two years: ~ 200 articles

- Get a computer to do most of the work for you

 First full $2 \rightarrow 4$ (6-leg) result obtained this way
Developments in pQCD (G. Salam, LPTHE) p.12/29

Multi-jets

New methods @ 1-loop

NLO bottleneck: loop calc.

\[2 \to 4 @ \text{NLO} \sim 2 \to 5 @ \text{Tree} \]

\[2 \to 4 @ 1\text{-loop} \]

Tricks to cancel divergences

(dipole subtraction)

Very hard!

Traditionally: 1-loop for \(2 \to 3\) proc. takes 1–2 years

Two ways of doing this more efficiently:

- Understand field theory better

 Enormous progress on this in past two years: \(~200\) articles

- Get a computer to do most of the work for you

 First full \(2 \to 4\) (6-leg) result obtained this way
Multi-jets

New methods @ 1-loop

2 \rightarrow 4 @ NLO \sim 2 \rightarrow 5 @ Tree \quad + \quad 2 \rightarrow 4 @ 1\text{-loop} \quad + \quad \text{Tricks to cancel divergences}

(dipole subtraction)

Very hard!

Traditionally: 1-loop for 2\rightarrow 3 proc. takes 1–2 years

Two ways of doing this more efficiently:

- Understand field theory better

 Enormous progress on this in past two years: \sim 200 articles

- Get a computer to do most of the work for you

 First full 2\rightarrow 4 (6-leg) result obtained this way
Would like a relation that avoids need for loop integrations. *Various kinds of recursion possible*

Technically: loop diagrams have more complex analytic properties than trees (*cuts* as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved.

Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastrolia, Perkins, Roiban, Spence, Travaglini, [...]

Recursion for loops?
Would like a relation that avoids need for loop integrations. Various kinds of recursion possible

Technically: loop diagrams have more complex analytic properties than trees (cuts as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved.

Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastroli, Perkins, Roiban, Spence, Travaglini, [. . .]
One ingredient of one of the “priority processes” \((pp \rightarrow 4 \text{ jets})\) is the 6-gluon 1-loop amplitude:

\[
\mathcal{A}_g = (A_g + 4A_f + 3A_s) - 4(A_f + A_s) + A_s
\]

\(\mathcal{N} = 4\) SUSY \quad \mathcal{N} = 1\) chiral SUSY \quad \text{scalar}

<table>
<thead>
<tr>
<th>(\mathcal{N} = 4)</th>
<th>(\mathcal{N} = 1)</th>
<th>(S (c, d, e))</th>
<th>(S (R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(---+++)+)</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BDDK94b</td>
</tr>
<tr>
<td>(A(+-++++))</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BBST04</td>
</tr>
<tr>
<td>(A(+-+---))</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BBST04</td>
</tr>
<tr>
<td>(A(----++))</td>
<td>BDDK94b</td>
<td>BBDD04</td>
<td>BBDI05</td>
</tr>
<tr>
<td>(A(---+++))</td>
<td>BDDK94b</td>
<td>BBCF05,BBDP04+5</td>
<td>BFM06</td>
</tr>
<tr>
<td>(A(--+-++))</td>
<td>BDDK94b</td>
<td>BBCF05,BBDP04+5</td>
<td>BFM06</td>
</tr>
</tbody>
</table>

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons

Promising + much progress made! But QCD loops are still far from having simplicity of the tree-level results...
One ingredient of **one** of the “priority processes” \((pp \rightarrow 4 \text{ jets})\) is the 6-gluon 1-loop amplitude:

\[
A_g = (A_g + 4A_f + 3A_s) - 4(A_f + A_s) + A_s
\]

- \(\mathcal{N} = 4\) SUSY
- \(\mathcal{N} = 1\) chiral SUSY
- scalar

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{N} = 4)</th>
<th>(\mathcal{N} = 1)</th>
<th>(S\ (c, d, e))</th>
<th>(S\ (R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(- - + + + +))</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BDDK94b</td>
<td>BDK05</td>
</tr>
<tr>
<td>(A(- + - + + +))</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BBST04</td>
<td></td>
</tr>
<tr>
<td>(A(- + + - + +))</td>
<td>BDDK94a</td>
<td>BDDK94b</td>
<td>BBST04</td>
<td></td>
</tr>
<tr>
<td>(A(- - - + + +))</td>
<td>BDDK94b</td>
<td>BBDD04</td>
<td>BBDI05</td>
<td>Dixon05</td>
</tr>
<tr>
<td>(A(- - + - + +))</td>
<td>BDDK94b</td>
<td>BBCF05,BBDP04+5</td>
<td>BFM06</td>
<td></td>
</tr>
<tr>
<td>(A(- + - + - +))</td>
<td>BDDK94b</td>
<td>BBCF05,BBDP04+5</td>
<td>BFM06</td>
<td></td>
</tr>
</tbody>
</table>

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons

Promising + much progress made! But QCD loops are still far from having simplicity of the tree-level results...
Loops from Feynman diagrams

Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals. NB: recursion for integrals, not amplitudes!
- Analytically with algebraic manipulation programs (Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others)
- Semi-numerically, “on the fly”, (Ellis, Giele, Glover, Zanderighi '04-05)
- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.

- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

Nagy, Soper '03
Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals. NB: recursion for integrals, not amplitudes!
- Analytically with algebraic manipulation programs
 - Binoth, Guillet, Heinrich, Pilon, Schubert ’05; + others
- Semi-numerically, “on the fly”,
 - Ellis, Giele, Glover, Zanderighi ’04-05
- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.
- Alternative integration techniques: e.g. subtract out divergences before integrating; do rest numerically.

Nagy, Soper ’03
Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals

- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals

 \[\text{NB: recursion for integrals, not amplitudes!} \]

 - Analytically with algebraic manipulation programs

 Binoth, Guillet, Heinrich, Pilon, Schubert ’05; + others

 - Semi-numerically, “on the fly”

 Ellis, Giele, Glover, Zanderighi ’04-05

 - Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.

- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

 Nagy, Soper ’03
Automated loops: applications

- **Full 6-gluon 1-loop amplitude!**
 - Ellis, Giele, Zanderighi ’06
 - Only fully known 2 → 4 1-loop amplitude in QCD

- **pp → H + 2 jets:** amplitudes done, implementation into MCFM in progress
 - Ellis, Campbell, Giele, Zanderighi, ’05-06

- **gg → WW via quark loop**
 - Binoth, Ciccolini, Kauer, Krämer ’05

- Similar techniques in EW: e^+e^- → 4 fermions
 - Denner, Dittmaier, Roth, Wieders ’05

Automated techniques have advantage of flexibility
But: speed can be issue in numerical variants.

NB: more ‘traditional’ NLO methods still important, talk by Oleari
<table>
<thead>
<tr>
<th>Multi–jets</th>
<th>Tree level</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds to</td>
<td>Many jets</td>
<td>A few jets</td>
</tr>
<tr>
<td>new physics</td>
<td>Low accuracy</td>
<td>Fair accuracy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNLO</th>
<th>NNLO Jets</th>
<th>Structure of PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>Status report</td>
<td>Mining for gold</td>
</tr>
<tr>
<td>QCD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other results:
- MC
- Resummation
Processes **with two QCD partons** @ LO are mostly done

- $e^+e^- \rightarrow \text{hadrons, } \tau \rightarrow \nu \pm \text{hadrons}$
- DIS coeff. fns., sum rules
- $pp \rightarrow W, Z, \gamma^*, H, WH, ZH$ (many including spin correl.)

Next in line: $e^+e^- \rightarrow 3$ jets?

- simplest!
- α_s & other measurements at LEP are theory limited

 theory uncertainty $\sim 3 - 4 \times \text{exp. error}$

- useful for studying perturbative/ non-perturbative interface.

Then DIS $\rightarrow 2 + 1$ and $pp \rightarrow 2$ jets…
NNLO bottleneck

$1 \to 3 \text{ @ NNLO} \sim \begin{array}{c}
1 \to 5 \text{ @ Tree} \\
1 \to 4 \text{ @ 1-loop} \\
1 \to 3 \text{ @ 2-loop}
\end{array} + \text{Tricks to cancel divergences}$
NNLO bottleneck

4 + 2\epsilon \text{ dim: } \int d\Phi_5 J(p_{1..5}) + \int d\Phi_4 \epsilon^{-2} J(p_{1..4}) + \int d\Phi_3 \epsilon^{-4} J(p_{1..3})

J is observable

1 \rightarrow 3 @ NNLO

1 \rightarrow 5 @ Tree

1 \rightarrow 4 @ 1-loop

1 \rightarrow 3 @ 2-loop

Tricks to cancel divergences
Developments in pQCD (G. Salam, LPTHE) p.19/29

NNLO

NNLO jets

4 + 2ε \text{ dim:} \quad J(\Phi^5) \quad J(\Phi^4) \quad J(\Phi^3)

$$\int d\Phi_5 \ J(p_{1..5}) \quad \int d\Phi_4 \ \varepsilon^{-2} J(p_{1..4}) \quad \int d\Phi_3 \ \varepsilon^{-4} J(p_{1..3})$$

Tricks to cancel divergences

Bottleneck
NNLO bottleneck

4 + 2\varepsilon \text{ dim:} \quad \int d\Phi_5 \, J(p_{1..5}) \quad \int d\Phi_4 \, \varepsilon^{-2} J(p_{1..4}) \quad \int d\Phi_3 \, \varepsilon^{-4} J(p_{1..3})

$1 \rightarrow 3$ @ NNLO \quad ~ \quad 1 \rightarrow 5$ @ Tree \quad 1 \rightarrow 4$ @ 1-loop \quad 1 \rightarrow 3$ @ 2-loop

"You have to do the integral, but you don’t know the integrand”

Anastasiou (KITP LoopFest III)

- **Subtraction:**
 - find an integrable function with same divergences as amplitudes
 - subtract it from real
 - add integrated version to virtuals.

- **Sector decomposition:**
 - split phase space into regions with at most one divergence each
 - Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of $\varepsilon^{-4}, \ldots, \varepsilon^0$.
NNLO bottleneck

4 + 2\epsilon \ \text{dim:} \quad \int d\Phi_5 \ J(p_{1..5}) \quad \int d\Phi_4 \ \epsilon^{-2} J(p_{1..4}) \quad \int d\Phi_3 \ \epsilon^{-4} J(p_{1..3})

J is observable

1 \to 3 @ NNLO \sim \quad + \quad + \quad + \quad +

1 \to 5 @ Tree \quad 1 \to 4 @ 1\text{-}loop \quad 1 \to 3 @ 2\text{-}loop

You have to do the integral, but you don’t know the integrand”

Anastasiou (KITP LoopFest III)

Subtraction:

Catani, Seymour ’96 + earlier authors

- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.

Sector decomposition:

Binoth, Heinrich ’00

- split phase space into regions with at most one divergence each
- Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of \(\epsilon^{-4}, \ldots, \epsilon^{0} \).
Developments in pQCD (G. Salam, LPTHE) p.19/29

NNLO bottleneck

4 + 2ε \text{ dim: } \int d\Phi_5 \ J(p_{1..5}) \quad \int d\Phi_4 \ \epsilon^{-2} \ J(p_{1..4}) \quad \int d\Phi_3 \ \epsilon^{-4} \ J(p_{1..3})

J is observable

1 \rightarrow 3 \ @ \ NNLO \sim

1 \rightarrow 5 \ @ \ Tree \quad 1 \rightarrow 4 \ @ \ 1\text{-loop} \quad 1 \rightarrow 3 \ @ \ 2\text{-loop}

"You have to do the integral, but you don’t know the integrand”

Anastasiou (KITP LoopFest III)

- **Subtraction:**
 - find an integrable function with same divergences as amplitudes
 - subtract it from real
 - add integrated version to virtuals.

- **Sector decomposition:**
 - split phase space into regions with at most one divergence each
 - Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of $\epsilon^{-4}, \ldots, \epsilon^0$.

- **Tricks to cancel divergences**
 - Anastasiou (KITP LoopFest III)
 - Binoth, Heinrich '00

Catani, Seymour '96 + earlier authors
Subtraction

- Applied to C_F^3 colour part of $e^+e^- \rightarrow 3$ jets
 $$(\alpha_s C_F / 2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4$$
 Gehrmann-de Ridder, Gehrmann & Glover '04

- New: Full ‘antenna’ subtraction formulae recently published idem. '05
talk by Del Duca for alternative subtractions

Sector decomposition

- Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations)
 Anastasiou, Dixon, Melnikov, Petriello '03–06

- New: partial $e^+e^- \rightarrow 3$ jets Heinrich '06

Expect first full $e^+e^- \rightarrow 3$ jet results soon (end 2006)
Subtraction

- Applied to C_F^3 colour part of $e^+e^- \rightarrow 3$ jets
 \[(\alpha_s C_F / 2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4\]
 Gehrmann-de Ridder, Gehrmann & Glover ’04

- **New:** Full ‘antenna’ subtraction formulae recently published
 idem. ’05
 ➤ talk by Del Duca for alternative subtractions

Sector decomposition

- Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations)
 Anastasiou, Dixon, Melnikov, Petriello ’03–06

- **New:** partial $e^+e^- \rightarrow 3$ jets
 Heinrich ’06

Expect first full $e^+e^- \rightarrow 3$ jet results soon (end 2006)
Subtraction

- Applied to C_F^3 colour part of $e^+ e^- \rightarrow 3$ jets
 \[(\alpha_s C_F / 2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4 \]
 Gehrmann-de Ridder, Gehrmann & Glover '04

- New: Full ‘antenna’ subtraction formulae recently published
 idem. ’05
 ➤ talk by Del Duca for alternative subtractions

Sector decomposition

- Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations)
 Anastasiou, Dixon, Melnikov, Petriello '03–06

- New: partial $e^+ e^- \rightarrow 3$ jets
 Heinrich ’06

Expect first full $e^+ e^- \rightarrow 3$ jet results soon (end 2006)
Cone-jets: misuse

(N)NLO is useless if

- Jet-algo is not IR safe
 - CDF has modified midpoint cone
 - New ‘search-cone step’ IR unsafe
 [discovered by Wobisch]

- Theory and experiment use different algorithms
 - R_{sep} in NLO theory, but not data

- NB: ‘NNLO-NLL’ – rough approx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cacciari [talk] & GPS '05–06
Cone-jets: misuse

(N)NLO is useless if

- Jet-algo is not IR safe
 - CDF has modified midpoint cone
 - New ‘search-cone step’ IR unsafe
 - [discovered by Wobisch]

- Theory and experiment use different algorithms
 - R_{sep} in NLO theory, but not data

- NB: ‘NNLO-NLL’ – rough approx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

CDF hep-ex/0512020

Midpoint

$Q = 6.1 \text{M}, (\mu = p_T^{\text{jet}}/2)$
$E_{\text{merge}} = 0.75, R_{\text{sep}} = 1.3$

Total systematic uncertainty
- Data corrected to parton level
- NLO pQCD

CDF Run II

$\int L = 385 \text{ pb}^{-1}$

k_t-algo

Cacciari [talk] & GPS '05–06
(N)NLO is **useless** if

- Jet-algo is not IR safe
 - CDF has *modified* midpoint cone
 - New ‘search-cone step’ IR unsafe
 [discovered by Wobisch]

- Theory and experiment use different algorithms
 - R_{sep} in NLO theory, but not data

- NB: ‘NNLO-NLL’ – rough approx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cone-jets: misuse

$\int L = 385 \text{ pb}^{-1}$

CDF Run II

CDF hep-ex/0512020

- Theory and experiment use different algorithms
- Progress in making k_t-algo faster/friendlier

CDF also has k_t-algo result
(N)NLO is **useless** if

- Jet-algo is not IR safe
 - CDF has *modified* midpoint cone
 - New ‘search-cone step’ IR unsafe

 [discovered by Wobisch]

- Theory and experiment use different algorithms
 - R_{sep} in NLO theory, but not data

- NB: ‘NNLO-NLL’ – rough approx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cacciari [talk] & GPS '05–06
Cone-jets: misuse

(N)NLO is useless if

- Jet-algo is not IR safe
 - CDF has modified midpoint cone
 - New ‘search-cone step’ IR unsafe
 [discovered by Wobisch]

- Theory and experiment use different algorithms
 - R_{sep} in NLO theory, but not data

- NB: ‘NNLO-NLL’ – rough approx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cacciari [talk] & GPS '05–06
<table>
<thead>
<tr>
<th>Multi−jets</th>
<th>Tree level</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds to new physics</td>
<td>Many jets</td>
<td>A few jets</td>
</tr>
<tr>
<td></td>
<td>Low accuracy</td>
<td>Fair accuracy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNLO</th>
<th>NNLO Jets</th>
<th>Structure of PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision QCD</td>
<td>Status report</td>
<td>Mining for gold</td>
</tr>
</tbody>
</table>

Other results
- MC
- Resummation

Various unexpected structures in MVV results. E.g. at large x, can write

$$P_{ij}(x) = \frac{A}{(1-x)^+} + B \delta(1-x) + C \ln(1-x) + \mathcal{O}(1), \quad A = \sum A_n(\alpha_s/4\pi)^n, \text{ etc.}$$

Remarkably, different coefficients seem to be interrelated:

- $C_2 = A_1^2$
- $C_3 = 2A_1A_2$

There is a proposal that there is a more fundamental evolution equation with a universal splitting function

$$\partial_{\ln Q^2} D(x, Q^2) = \int_0^1 \frac{dz}{z} \mathcal{P}(x, \alpha_s(Q^2/z)) D(\frac{x}{z}, z^\sigma Q^2)$$

$$\sigma = 1: \text{ time-like} \quad \sigma = -1: \text{ space-like}$$

Postulate new universal splitting function \mathcal{P} to be classical at large $x \Rightarrow C = A^2$ at all orders; get most of NNLL $\mathcal{O}(1)$ term too!
Various unexpected structures in MVV results. E.g. at large x, can write

$$P_{ij}(x) = \frac{A}{(1-x)_+} + B \delta(1-x) + C \ln(1-x) + \mathcal{O}(1), \quad A = \sum A_n(\alpha_s/4\pi)^n, \text{ etc.}$$

Remarkably, different coefficients seem to be interrelated:

- $C_2 = A_1^2$
 - Curci, Furmanski, Petronzio '80
- $C_3 = 2A_1A_2$
 - MVV '04

∃ a proposal that there is a more fundamental evolution equation with a **universal splitting function**

$$\partial_{\ln Q^2} D(x, Q^2) = \int_0^1 \frac{dz}{z} \mathcal{P}(x, \alpha_s(Q^2/z)) D\left(\frac{x}{z}, z^\sigma Q^2\right) \quad \left\{ \begin{array}{ll} \sigma = 1: & \text{time-like} \\ \sigma = -1: & \text{space-like} \end{array} \right.$$

Postulate new universal splitting function \mathcal{P} to be classical at large $x \Rightarrow$

$$C = A^2 \text{ at all orders; get most of NNLL } \mathcal{O}(1) \text{ term too!}$$

Dokshitzer, Marchesini, GPS '05
Original aim of Dokshitzer was to understand difference between time-like ($\sigma = +1$) and space-like ($\sigma = -1$) splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$P_{\sigma = +1}(z) \iff P_{\sigma = -1}(1/z)$$

Curci, Furmanski, Petronzio '80
Stratmann & Vogelsang '97

New universality: get difference at order n from result at order $n - 1$

$$P_{\sigma = \pm 1}(z) \implies P_{\sigma = +1}(z) - P_{\sigma = -1}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06
Original aim of Dokshitzer was to understand difference between time-like ($\sigma = +1$) and space-like ($\sigma = -1$) splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$P_{\sigma=+1}^{(n)}(z) \iff P_{\sigma=-1}^{(n)}(1/z)$$

Curci, Furmanski, Petronzio '80
Stratmann & Vogelsang '97

New universality: get difference at order n from result at order $n - 1$

$$P_{\sigma=\pm 1}^{(n-1)}(z) \implies P_{\sigma=+1}^{(n)}(z) - P_{\sigma=-1}^{(n)}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06
Original aim of Dokshitzer was to understand difference between time-like ($\sigma = +1$) and space-like ($\sigma = -1$) splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$P_{\sigma=+1}^{(n)}(z) \iff P_{\sigma=-1}^{(n)}(1/z)$$

Curci, Furmanski, Petronzio '80
Stratmann & Vogelsang '97

New universality: get difference at order n from result at order $n - 1$

$$P_{\sigma=\pm 1}^{(n-1)}(z) \implies P_{\sigma=+1}^{(n)}(z) - P_{\sigma=-1}^{(n)}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06
Many other “goodies” in the MVV papers (even more in supersymmetric limit)...

In $\mathcal{N} = 4$ SUSY Yang-Mills amplitudes, planar n-loop seems to be reducible just to powers of 1-loop:

$$M_{n-\text{leg}}^{(2-\text{loop})} = \frac{1}{2}(M_{n}^{(1)})^2 + f(\epsilon)M_{n}^{(1)}(2\epsilon) - \frac{\pi^4}{72} + \mathcal{O}((\epsilon))$$

4-legs: Anastasiou, Bern, Dixon, Koswoer '03

5-legs: Cachazo, Spradlin, Volovich '06; Bern et al '06

NB: numerical loop calcs: Anastasiou & Daleo [talk] '05 ; Czakon '05

$$M_{n-\text{leg}}^{(3-\text{loop})} = -\frac{1}{3}(M_{n}^{(1)})^3 + M_{n}^{(1)}(\epsilon)M_{n}^{(2)}(\epsilon) + f^{(3)}(\epsilon)M_{n}^{(1)}(3\epsilon) + C^{(3)} + \mathcal{O}(\epsilon)$$

4-legs: Bern, Dixon, Smirnov '05

In large-angle soft-colour resummation (‘fifth form factor’) for $2 \rightarrow 2$ scattering, symmetry in exch. of kinematic variables and # of colours:

$$\ln \frac{s^2}{ut} - 2\pi i \frac{\ln \frac{u}{t}}{\ln \frac{u}{t}} \iff NC$$

Dokshitzer & Marchesini '05 (see also Seymour '05)
Multi–jets
Backgrounds to new physics

Tree level
Many jets
Low accuracy

NLO
A few jets
Fair accuracy

NNLO
Precision QCD

NNLO Jets
Status report

Structure of PT
Mining for gold

Other results
- MC
- Resummation
Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)

 Schroder & Steinhauser ’05; Chetyrkin, Kuhn, Sturm, ’05

- IR safety for jet flavour

 Banfi, GPS [link to talk], Zanderighi ’06

MC calculations

- Herwig++ → adolescence ($pp \rightarrow DY$), Ariadne++

 Lönnblad’s talk

- Steady progress in matching MC & NLO

 MC@NLO: Frixione’s talk

 alternative methods: **Soper’s, Nason’s talks**

- Using NNLL and NNLO for reweighting of event generators

 Davatz et al ’04; Davatz et al ’06

Analytical resummations:

- Collinear region (and threshold): $\text{MVV} \Rightarrow \alpha_s^n L^{n-2}$

- Generic large angle region, even $\alpha_s^n L^n$ much less well understood

 - Gaps-between-jets phenomenology

 Forshaw, Kyrieleis, Seymour ’05-’06

 - Non-global: unanticipated new $\alpha_s^n L^n$ for jets

 Banfi & Dasgupta [link to talk] ’05
Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)
 Schroder & Steinhauser ’05; Chetyrkin, Kuhn, Sturm, ’05
- IR safety for jet flavour
 Banfi, GPS [talk], Zanderighi ’06

MC calculations

- Herwig++ → adolescence ($pp \rightarrow DY$), Ariadne++
 Lönnblad’s talk
- Steady progress in matching MC & NLO
 MC@NLO: Frixione’s talk
 alternative methods: Soper’s, Nason’s talks
- Using NNLL and NNLO for reweighting of event generators
 Davatz et al ’04; Davatz et al ’06

Analytical resummations:

- Collinear region (and threshold): $MVV \Rightarrow \alpha_s^n L^{n-2}$
- Generic large angle region, even $\alpha_s^n L^n$ much less well understood
 - Gaps-between-jets phenomenology
 - Non-global: unanticipated new $\alpha_s^n L^n$ for jets
 Forshaw, Kyrieleis, Seymour ’05-’06
 Banfi & Dasgupta [talk] ’05
Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)

 Schroder & Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

- IR safety for jet flavour

 Banfi, GPS [talk], Zanderighi '06

MC calculations

- Herwig++ \rightarrow adolescence ($pp \rightarrow$ DY), Ariadne++

 Lönnblad’s talk

- Steady progress in matching MC & NLO

 MC@NLO: Frixione’s talk

 alternative methods: Soper’s, Nason’s talks

- Using NNLL and NNLO for reweighting of event generators

 Davatz et al '04; Davatz et al '06

Analytical resummations:

- Collinear region (and threshold): $\text{MVV} \Rightarrow \alpha_s^n L^{n-2}$

- Generic large angle region, even $\alpha_s^n L^n$ much less well understood

 Gaps-between-jets phenomenology

 Forshaw, Kyrielleis, Seymour '05-'06

 Non-global: unanticipated new $\alpha_s^n L^n$ for jets

 Banfi & Dasgupta [talk] '05
Twistors / amplitude-recursion: major theory advance — starting to give very non-trivial results, especially for loops

Many string theorists now thinking about QCD
Some phenomenologists diverted into strings

Automated 1-loop calculations are important complementary development. More flexible; crucial for cross-checks

$e^+ e^- \rightarrow 3$ jets at NNLO is on final stretch

How much longer before DIS 2+1 and pp 2 \rightarrow 2?

Once NNLO is available, comparison to data is not the only thing to be done with it. Learn about structure in QCD

Steady progress also for MC, resummations

Thanks to: Bern, Butterworth, P. Ciafaloni, Comelli, Dokshitzer, R.K. Ellis, Kosower, Lönnblad, Marchesini, Moretti, Seymour, Vogt, Webber
Twistors / amplitude-recursion: major theory advance — starting to give very non-trivial results, especially for loops

Many string theorists now thinking about QCD
Some phenomenologists diverted into strings

Automated 1-loop calculations are important complementary development. More flexible; crucial for cross-checks

$e^+ e^- \rightarrow 3$ jets at NNLO is on final stretch

How much longer before DIS 2+1 and pp 2 → 2?

Once NNLO is available, comparison to data is not the only thing to be done with it. Learn about structure in QCD

Steady progress also for MC, resummations

Thanks to: Bern, Butterworth, P. Ciafaloni, Comelli, Dokshitzer, R.K. Ellis, Kosower, Lönblad, Marchesini, Moretti, Seymour, Vogt, Webber
EXTRA SLIDES
CPU time in seconds for the computation of the n gluon amplitude on a standard PC (2 GHz Pentium IV), summed over all helicities.

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berends-Giele</td>
<td>0.00005</td>
<td>0.00023</td>
<td>0.0009</td>
<td>0.003</td>
<td>0.011</td>
<td>0.030</td>
<td>0.09</td>
<td>0.27</td>
<td>0.7</td>
</tr>
<tr>
<td>CSW</td>
<td>0.00001</td>
<td>0.00040</td>
<td>0.0042</td>
<td>0.033</td>
<td>0.24</td>
<td>1.77</td>
<td>13</td>
<td>81</td>
<td>—</td>
</tr>
<tr>
<td>BCF</td>
<td>0.00001</td>
<td>0.00007</td>
<td>0.0003</td>
<td>0.001</td>
<td>0.006</td>
<td>0.037</td>
<td>0.19</td>
<td>0.97</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Dinsdale, Ternick & Weinzierl ’06

Gain a factor of ~ 4 for moderate n — useful, not overwhelming.

Slowly making it into phenomenological work

NB: trees in MadEvent, ALPGEN, HELAC/PHEGAS, CompHEP, GRACE, Amegic

But: real progress here is in discovery of new analytical structures in field theory (helpful also elsewhere, e.g. loops).
Supersymmetric decomposition (allow gluons, fermions and scalars in loops)

\[\mathcal{A}_g = (\mathcal{A}_g + 4\mathcal{A}_f + 3\mathcal{A}_s) - \frac{4(\mathcal{A}_f + \mathcal{A}_s)}{\mathcal{N}} + \mathcal{A}_s \]

\(\mathcal{N} = 4 \) SUSY \(\mathcal{N} = 1 \) chiral SUSY scalar

SUSY gives many cancellations. Most difficult piece is \textit{scalar}.

Analytical structure involves coefficients \((c, d, e)\) of standard boxes \((l_4)\), triangles \((l_3)\) and bubbles \((l_2)\), and rational terms \((R)\):

\[\mathcal{A}_s = \sum_i c_i l_4^i + \sum_i d_i l_3^i + \sum_i e_i l_2^i + R \]

- coefficients \((c, d, e)\) can be (i) read off by merging trees (cut constructibility) (ii) obtained recursively (à la BCFW)
- rational parts can be obtained recursively
Example of Giele-Glover method

\[\int \frac{d^D \ell \ell^{\mu_1} \ell^{\mu_2}}{(\ell + q_1)^2(\ell + q_2)^2(\ell + q_3)^2(\ell + q_4)^2} = \frac{1}{2} g^{\mu_1 \mu_2} I(D + 2; 1, 1, 1, 1) + 2q_1^{\mu_1} 2q_1^{\mu_2} l_4(D + 4; 3, 1, 1, 1) + \ldots \]

Then

\[2l_4(8; 3, 1, 1, 1) = -2 \left(\sum_i S_{1i}^{-1} \right) l_4(8; 2, 1, 1, 1) - S_{11}^{-1} l_4(6; 1, 1, 1, 1) - S_{12}^{-1} l_3(6; 1, 0, 1, 1) - S_{13}^{-1} l_3(6; 1, 1, 0, 1) - S_{14}^{-1} l_3(6; 1, 1, 1, 0) \]

The \(l_n(D; 1, 1, 1, 1) \) etc. are the basis integrals. \(S_{ij} \) is kinematical matrix, \(S_{ij} = (q_i - q_j)^2 \).

Reduction procedure done numerically for each kinematic configuration.
Cancelling NNLO divergences

How to get cancellations?

1. **Subtraction** method:

\[
\int d^D \Phi_5 M_5 J(p_{1..5}) + \int d^D \Phi_4 e^{-2} J(p_{1..4}) + \int d^D \Phi_3 e^{-4} J(p_{1..3}) + \ldots
\]

Applied to \(e^+e^- \to 2\) jets and \(C_F^3\) colour part of \(e^+e^- \to 3\) jets:

\[
(\alpha_s C_F/2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4
\]

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all \(e^+e^- \to 3\) jet ‘antenna’ subtraction pieces are ready — ‘just’ need to be coded!

idem. '05
Cancelling NNLO divergences

How to get cancellations?

1. **Subtraction** method:

\[
\int d^4 \Phi_5 [M_5 J(p_{1..5}) - S_5 J(\bar{p}_{1..3})] + \int d^4 \Phi_4 [M_4 J(p_{1..4}) + S_4 J(\bar{p}_{1..3})] + \ldots
\]

Applied to $e^+e^- \rightarrow 2$ jets and C_F^3 colour part of $e^+e^- \rightarrow 3$ jets:

\[
(\alpha_s C_F / 2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4
\]

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all $e^+e^- \rightarrow 3$ jet ‘antenna’ subtraction pieces are ready — ‘just’ need to be coded!

idem. '05
Cancelling NNLO divergences

4 + 2\varepsilon \text{ dim:} \quad \int d\Phi_5 \ J(p_{1..5}) \quad \int d\Phi_4 \ \varepsilon^{-2} J(p_{1..4}) \quad \int d\Phi_3 \ \varepsilon^{-4} J(p_{1..3})

1 \rightarrow 3 @ NNLO \sim 1 \rightarrow 5 @ Tree + 1 \rightarrow 4 @ 1\text{-loop} + 1 \rightarrow 3 @ 2\text{-loop}

How to get cancellations?

1. Subtraction method:

\[\int d^4\Phi_5[M_5 J(p_{1..5}) - S_5 J(\vec{p}_{1..3})] + \int d^4\Phi_4[M_4 J(p_{1..4}) + S_4 J(\vec{p}_{1..3})] + \ldots \]

Applied to $e^+ e^- \rightarrow 2$ jets and C_F^3 colour part of $e^+ e^- \rightarrow 3$ jets:

\[(\alpha_s C_F / 2\pi)^3 \text{ piece of } \langle 1 - T \rangle = -20.4 \pm 4 \]

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all $e^+ e^- \rightarrow 3$ jet ‘antenna’ subtraction pieces are ready — ‘just’ need to be coded!

idem. '05
Cancelling NNLO divergences

How to get cancellations?

2. Sector decomposition for isolating divergences

\[
\int d^D\Phi_5 M_5 J(p_{1..5}) = \varepsilon^{-4} \int d^4\Phi_5 f_{-4} M_5 J(p_{1..5}) + \cdots + \int d^4\Phi_5 f_0 M_5 J(p_{1..5})
\]

The \(f_{-i} \) involve plus-distributions of kinematic invariants. Each integral finite.

Applied to
- \(e^+ e^- \rightarrow 2 \) jets
- \(e^+ e^- \rightarrow 3 \) jets (partial)
- \(pp \rightarrow W, Z, H \) (fully exclusive)
Cancelling NNLO divergences

4 + 2ε \dim:
\int d\Phi_5 J(p_{1..5}) \quad \int d\Phi_4 \varepsilon^{-2} J(p_{1..4}) \quad \int d\Phi_3 \varepsilon^{-4} J(p_{1..3})

J is observable

1 \rightarrow 3 @ NNLO \sim \quad 1 \rightarrow 4 @ 1\text{-}loop \quad 1 \rightarrow 5 @ Tree \quad 1 \rightarrow 3 @ 2\text{-}loop

Tricks to cancel divergences

How to get cancellations?

2. Sector decomposition for isolating divergences \hspace{1cm} \text{Binoth & Heinrich '00}

\int d^D\Phi_5 M_5 J(p_{1..5}) = \varepsilon^{-4} \int d^4\Phi_5 f_{-4} M_5 J(p_{1..5}) + \cdots + \int d^4\Phi_5 f_0 M_5 J(p_{1..5})

The \(f_{-i} \) involve plus-distributions of kinematic invariants. Each integral finite.

Applied to

\begin{itemize}
\item \(e^+ e^- \rightarrow 2 \) jets \hspace{1cm} \text{Binoth & Heinrich '04; Anastasiou, Melnikov & Petriello '04}
\item \(e^+ e^- \rightarrow 3 \) jets (partial) \hspace{1cm} \text{Heinrich '06}
\item \(pp \rightarrow W, Z, H \) (fully exclusive) \hspace{1cm} \text{Anastasiou, Dixon, Melnikov & Petriello '04-06}
\end{itemize}
EW is not so weak

Widely discussed for ILC. How about pp?

e.g. NLO EW corrections to $pp \rightarrow Z + \text{jet}$

These are significant (even NNLO \sim few %)

Maina Moretti Ross '04
Kulesza et al '04

QED effects $\lesssim 1\%$

Martin et al.
Glosser et al
Fortran

- Matching to multi-parton LO matrix elements now widespread (CKKW)
- New, better shower in Pythia (k_\perp ordered)
- Underlying event models much improved / more practical
- Reaching end of line soon!

C++

<table>
<thead>
<tr>
<th>based on ThePEG</th>
<th>Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herwig++ ready for e^+e^-, $pp \rightarrow DY$ ready</td>
<td>Pythia 8 being coded Sherpa ready for e^+e^- and pp</td>
</tr>
<tr>
<td>cancelled</td>
<td>see talk by Lönnblad</td>
</tr>
</tbody>
</table>

Includes new, improved angular-ordered shower

New player! Dresden group
Resummation ingredients summary

<table>
<thead>
<tr>
<th>order</th>
<th>Soft + collinear hadr.</th>
<th>Hard Collinear hadr.</th>
<th>Soft large angle global NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_s^n L^{n+1}$</td>
<td>✓ [✓]+BSZ04</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>$\alpha_s^n L^n$</td>
<td>✓ [✓]+BSZ04</td>
<td>✓ ✓</td>
<td>✓ [✓] $[N_c \to \infty]$</td>
</tr>
<tr>
<td>$\alpha_s^n L^{n-1}$</td>
<td>MVV04 [FG04]</td>
<td>BCFG03 [FG04]</td>
<td>CGF+HK01 — —</td>
</tr>
<tr>
<td>$\alpha_s^n L^{n-2}$</td>
<td>— —</td>
<td>MVV05 —</td>
<td>MVV05 —</td>
</tr>
</tbody>
</table>

Large angle global

2 → 2 BKOS89–98; generic: BCMN03; 2 → 3 [partial] KS05

Large angle NG

hemisph./patch: DS01–02; k_t algo: AS02, BD05

✓≡ historical results/techniques (< ’01) [...] ≡ only for special cases

hadr. ≡ anything measuring hadrons NG ≡ non-global

Best accuracies (NNLL) for most inclusive observables

Higgs transverse-mom. distribution.

First differential NNLL resummation

Resums \(L \sim \ln \frac{M_H}{Q_t} \) (for \(gg \rightarrow H \))

\[
\exp[\alpha_s^n L^{n+1} + \alpha_s^n L^n + \alpha_s^n L^{n-1}]
\]

Bozzi et al '03

- NNLL uncertainty \(\sim 7\% \)
 \((\sim \text{NLL}/2) \)
- Shape quite different from plain parton showering (Pythia)
 — relevant for Higgs searches
 \((gg \rightarrow H \rightarrow WW \rightarrow \ell\nu\ell\nu) \)?

Davatz et al '04
How rare are gaps in $pp \rightarrow 2$ jets with big ΔY?

Answer needs advanced tools

Non-global logarithms

- Appear for measurements of *part* of phase space

 Also e.g. dijet properties, Banfi & Dasgupta ’03

- Only in large-N_c limit! Not automated!

 Connections to BFKL: Marchesini-Mueller ’03; Weigert ’03

Multi-jet structure

- Stony Brook soft-colour evolution

- Breakdown of ‘probabilistic radiation’

Are Monte Carlos up to the job? **Unknown...**