Phase structure of SU(2) gauge theory with adjoint Wilson fermions

Yoshio Kikukawa (Univ. Tokyo)
Hideo Matsufuru, and Norikazu Yamada (KEK)
Kei-ichi Nagai (Nagoya Univ.)

Email: hideo.matsufuru@kek.jp
http://suchix.kek.jp/hideo_matsufuru/

High Energy Accelerator Research Organization (KEK)

Japanese-German Seminar 2010, 4-6 Nov 2010, Mishima, Japan
Motivation

Study of phase structure of SU(N) gauge theories

- Search for conformal window: possible alternative to Standard Model Higgs sector
- Fundamental/adjoint (or higher) representations
- At zero and finite temperature

- SU(2) theories:
 - Conformal behavior is expected with less #flavor
 - Nf=2 adjoint fermions: "Minimal Walking technicolor"

Del Debbio et al. (2008), Bursa et al. (2010)
Hietanen, Rummukainen, Tuominen (2009)
Our approach

Use of overlap fermion
- Exact chiral symmetry
- Epsilon regime to explore chiral symmetry breaking

• For locality of overlap operator,
 - Wilson-Dirac kernel must have gap (mobility edge)
 ⇔ Out of Aoki phase (Golterman and Shamir, 2003)
 — Motivation of this work

Present work:
• SU(2) gauge theories with Nf=2 fundamental and adjoint Wilson fermions (+ twisted mass ghost)
 - Investigation of Aoki phase
 - Preparation to overlap simulations
 - Exercise to probe conformal behaviors
Aoki phase

Flavor-parity broken phase of Wilson-Dirac operator
- Proposed by Aoki, 1984
- Numerical evidence
- Chiral Lagrangian analysis
 (Sharpe and Singleton, 1998)

- As the kernel of overlap operator, *to be in between fingers*

 - Eigenmodes of H_W is local below "mobility edge"
 - Aoki phase is characterized by vanishing mobility edge

To be here
Aoki phase

Results in QCD: Around 1st 'finger',

• 1st order phase transition at high β
 e.g. Ilgenfritz et al. (2004); Farchioni et al. (2005)

• 1st order transition is also observed at strong coupling
 e.g., JLQCD Collaboration (2005); Nagai et al. (2009)
 – Dynamics may differ from high β region

In present work,

• Wide range of bare quark mass of Wilson-Dirac operator is explored

• Not only 1st 'finger', 2nd 'finger' is also investigated
 – Number of light d.o.f. different from 1st finger
Lattice setup

SU(2) Iwasaki gauge + Nf=2 adjoint Wilson fermions (+ twisted mass ghost)

- Fermions introduced as topology fixing term

\[
\det \left(\frac{H_W^2}{H_W^2 + \mu^2} \right) = \int \mathcal{D}\chi^\dagger \mathcal{D}\chi \exp[-S_E]
\]

- Twisted mass ghost cancels high frequency effect:
 — not expected to change low energy dynamics

Present stage:

- Lattice: \(8^3 \times 16, \beta = 0.80, 0.90, 1.0, 1.2\) (mainly at 0.90)
- **All results are very preliminary**
- Similar behavior is observed for fundamental fermions
Analysis procedure

Observed quantities:

- **Meson correlators**
 - PS and V meson masses, PCAC quark mass
 - Propagators with twisted mass \(m_1 \rightarrow \text{charged pion mass} \)
 - Linearly extrapolated to \(m_1 = 0 \) with smallest 3 points
 - *Vanishing charged pion mass = Aoki phase*

- **Static quark potential**
 - Fundamental static quark

- **Spectrum of Wilson-Dirac operator (in progress)**
 - Locality

- **Spectrum of overlap-Dirac operator (in progress)**
 - Chiral condensate
 - Comparison with Random Matrix Theory
\(\beta = 0.90 \), around 1st finger

PS meson mass vs \(M_{0V} \) (valence) around 1st 'finger'
- Partially quenched data: sign of slope suddenly changes
- Valence=sea data shows cusp-like structure
- Consistent with 1st order phase transition
\(\beta = 0.90: \) PS meson mass vs PCAC mass

- \(M_0 \leq 1.51: \) Positive PCAC mass
 - Partially quenched data shows \(m_{PS}^2 \propto m_q \)
 - Not enough light
- \(M_0 \geq 1.52: \) Negative PCAC mass
 - \(M_0 = 1.52 \) corresponds to our lightest case
$\beta=0.90$: Vector meson mass

- M_0 below transition: QCD-like behavior
- M_0 above transition: m_V/m_{PS} seems to be const.
 - Consistent with signature of near-conformal
$\beta=0.90$: Static potential

- Static potential in fundamental repr.
 - $M_0 \leq 1.51$: QCD-like confining potential

 Cf: at $M_0=1.40$, $a(r_0)\sim 0.2\text{fm}$ \[r_0=0.5\text{fm}: \text{just a guide}\]
 - At $M_0=1.52$, string tension is consistent with zero
 Consistent with conformal phase
 - At $M_0 \geq 1.55$, tiny string tension
$\beta=0.90$: Plaquette

- **2-state signal**
 - Update for $M_0=1.52$ with hot($M_0=1.51$) and cold initial configs. exhibit different plaquette values
 - **Supports 1st order phase transition**
Discussion

Result at $\beta = 0.90$ around 1st finger:

- **1st order phase transition** (No Aoki phase)
- At $M_0 = 1.52$ ($m_q < 0$, smallest $|m_q|$) near-conformal behavior
 - V/PS meson mass ratio
 - Static potential
 - Increasing M_0 would wash out conformal behavior
- In positive m_q region, quark mass is not enough light

Conjecture: While light quark mass region is near-conformal, difficult to observe due to 1st order phase transition.

To confirm this scenario,

- At larger β, small m_q should be explored: conformal-like behavior should be observed
\[\beta = 0.90: \text{ around 2nd finger} \]

- Light d.o.f is 8 instead of 2 around 1st finger
- PS meson mass vs \(M_{0V} \)
 - Consistent with 2nd order phase transition?
 - Existence of Aoki phase?
- Static potential exhibits no string tension \(2.3 \leq M_0 \leq 2.6 \)

More detailed study is in progress
\(\beta = 1.0 \) and 1.2: around 1st finger

- At \(\beta = 0.80 \), similar result at \(\beta = 0.90 \) is observed
- At \(\beta = 1.0 \): 1\(^{st}\) order transition still remains, but weak
- At \(\beta = 1.2 \): 1\(^{st}\) order transition seems to disappear

More detailed study is in progress
Conclusion and outlook

We are exploring phase structure of SU(2) gauge theories with Nf=2 adjoint Wilson fermions

- Structure around 1st and 2nd fingers
- 1st order transition around 1st finger at $\beta \leq 1.0$
- Conformal-like behavior is observed for small PCAC mass region around 1st finger

Works in progress:

- Extension to larger lattice sizes and other β values
- Spectrum of Wilson and overlap Dirac operator
- Fundamental fermions
- Dynamical overlap fermions

Outlook

- Finite temperature