OPTIMAL JET FINDER
solution of the problem of jet definition

Ernest Jankowski
University of Alberta

in collaboration with
D. Grigoriev • F. Tkachov

edited and presented by F.T.
Plan of the talk

- I explain what the Optimal Jet Definition is
- and how its implementation works
- I compare the Optimal Jet Definition to the cone and k_T algorithms
- I present the results of a benchmark MC test based on fully hadronic decays of W-boson pairs
Introduction

- most common jet finding algorithms used in data analysis are cone and k_T binary recombination algorithm

- I will present so called Optimal Jet Definition (OJD) proposed by F. Tkachov

- FORTRAN 77 implementation of OJD called Optimal Jet Finder (OJF) is described in hep-ph/0301226 (Comp. Phys. Commun., in print)

- OJF has many advantages in comparison with the cone and k_T
Recombination matrix z_{aj}

HEP event: list of particles p_a, $a = 1, 2, \ldots, n_{\text{parts}}$
(partons • hadrons • calorimeter cells • towers • preclusters)

recombination matrix

\[
\left\{ z_{aj} \right\}_{n_{\text{parts}} \times n_{\text{jets}}}
\]

\[q_j = \sum_{a=1}^{n_{\text{parts}}} z_{aj} p_a\]

the 4-momentum q_j of the j-th jet expressed by 4-momenta p_a of the particles

result: list of jets q_j, $j = 1, 2, \ldots, n_{\text{jets}}$
Recombination matrix z_{aj}

$$q_j = \sum_{a=1}^{n_{\text{parts}}} z_{aj} p_a$$

the 4-momentum q_j of the j-th jet expressed by 4-momenta p_a of the particles ($a=1,2,...,n_{\text{parts}}$)

$$z_{aj} \geq 0$$

the fraction of the energy of the a-th particle can positive only

$$\overline{z}_a \equiv 1 - \sum_{j=1}^{n_{\text{jets}}} z_{aj}$$

the fraction of the energy of the a-th particle that does not go into any jet

$$\overline{z}_a \geq 0$$

i.e. no more than 100% of each particle is assigned to jets
Optimal Jet Definition

- any allowed value of the recombination matrix \(\{z_{aj}\} \) describes some jet configuration

- the desired optimal jet configuration is the one that **minimizes** some function \(\Omega(\{z_{aj}\}) \)

- the details of \(\Omega \) are different for CM lepton-lepton collisions (spherical kinematics) and collisions involving hadrons (cylindrical kinematics) where the role of transverse energy \(E^\perp \) is emphasized
Optimal Jet Definition – spherical kinematics

\[\Omega\left(\{z_{aj}\}\right) = \frac{4}{R^2} \sum_{j=1}^{n_{\text{jets}}} \sum_{a=1}^{n_{\text{parts}}} z_{aj} E_a \sin^2 \frac{\theta_{aj}}{2} + \sum_{a=1}^{n_{\text{parts}}} z_{a} E_a \]

- \(\text{width of the } j\text{-th jet} \)
- \(\text{energy outside jets} \)

\[q_j = (E_j, q_j) = \sum_{a=1}^{n_{\text{parts}}} z_{aj} p_a \]

\(\theta_{aj} \) is the angle between the \(a\)-th particle and \(j\)-th jet

\(E_a \) is the energy of the \(a\)-th particle

\(R>0 \) is a parameter with a similar meaning as the cone radius
Optimal Jet Definition - cylindrical kinematics

$$
\Omega(\{z_{aj}\}) = \frac{4}{R^2} \sum_{j=1}^{n_{jets}} \sum_{a=1}^{n_{parts}} z_{aj} E_a^\perp \left(\sinh^2 \frac{\eta_a - \eta_j}{2} + \sinh^2 \frac{\varphi_a - \varphi_j}{2} \right) + \sum_{a=1}^{n_{parts}} z_a E_a^\perp
$$

$$
\eta_j = \frac{\sum_{a=1}^{n_{parts}} z_{aj} E_a^\perp \eta_a}{\sum_{a=1}^{n_{parts}} z_{aj} E_a^\perp}
$$

$$
E_a^\perp \equiv \sqrt{(p_a^x)^2 + (p_a^y)^2}
$$

$$
q_j \equiv (E_j, q_j) = \sum_{a=1}^{n_{parts}} z_{aj} p_a
$$

$$
\frac{q_j^\perp}{|q_j^\perp|} \equiv (\cos \varphi_j, \sin \varphi_j)
$$
Optimal Jet Finder – fixed number of jets

- desired optimal jet configuration corresponds to minimum of $\Omega(\{z_{dj}\})$
- the program finds a minimum iteratively using a simple gradient-based method
- facilitated by analytical formulas for gradient
- start with some candidate minimum (the initial jet configuration) and descend into a local minimum in subsequent iterations
- the initial jet configuration may be completely random
\(R = 0.1 \)

algorithm finds the most energetic particles

\[\rightarrow \varphi \left[0^\circ - 360^\circ \right] \quad \uparrow \theta \left[0^\circ - 180^\circ \right] \quad e^+e^- \rightarrow W^+W^- \rightarrow 4 \text{ jets} \quad 180 \text{ GeV} \]
$R = 0.2$

$\rightarrow \varphi [0^\circ - 360^\circ]$ $\uptheta [0^\circ - 180^\circ]$ $e^+e^- \rightarrow W^+W^- \rightarrow 4 \text{ jets} \ 180 \text{ GeV}$
$R = 0.3$

$\rightarrow \phi [0^\circ - 360^\circ]$ $\uparrow \theta [0^\circ - 180^\circ]$ $e^+ e^- \rightarrow W^+ W^- \rightarrow 4$ jets 180 GeV
$R = 0.4$

$\rightarrow \phi [0^\circ - 360^\circ] \quad \uparrow \theta [0^\circ - 180^\circ] \quad e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets} \quad 180 \text{ GeV}$
$R = 0.5$

$\phi [0^\circ - 360^\circ] \quad \Theta [0^\circ - 180^\circ] \quad e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets} \quad 180 \text{ GeV}$
$R = 0.6$

notice convex jet shapes

→ $\phi [0^\circ - 360^\circ]$ ↑ $\Theta [0^\circ - 180^\circ]$ $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets 180 GeV
$R = 0.7$

$\rightarrow \varphi [0^\circ - 360^\circ]$
$\uparrow \theta [0^\circ - 180^\circ]$
$e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets}$
180 GeV
$\phi [0^\circ - 360^\circ]$ $\theta [0^\circ - 180^\circ]$ $e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets} \quad 180 \text{ GeV}$
iteration = 0

jets are entangled
algorithm sort of disentangles them

$\rightarrow \varphi [0^\circ - 360^\circ]$ $\uparrow \theta [0^\circ - 180^\circ]$ $e^+e^- \rightarrow W^+W^- \rightarrow 4 \text{ jets}$ 180 GeV
iteration = 1

→ φ [0° - 360°] ↑ θ [0° - 180°] e^+ e^- → W^+ W^- → 4 jets 180 GeV
iteration = 2

→ φ [0° - 360°] ^Θ [0° - 180°] e^+ e^- → W^+ W^- → 4 jets 180 GeV
iteration = 3

→ φ [0° - 360°] \uparrow θ [0° - 180°] e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets} 180 \text{ GeV}
iteration = 4

\[e^+ e^- \rightarrow W^+ W^- \rightarrow 4 \text{ jets} \quad 180 \text{ GeV} \]
iteration = 5

jets sort of condense out of the event

$\rightarrow \varphi [0^\circ - 360^\circ]$ $\uparrow \vartheta [0^\circ - 180^\circ]$ $e^+e^- \rightarrow W^+W^- \rightarrow 4 \text{jets}$ 180 GeV
iteration = 6

to $\phi [0^\circ - 360^\circ]$ \thetag{[0^\circ - 180^\circ]} $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets 180 GeV
Optimal Jet Finder – number of tries

- each time the programs starts with a random configuration, it finds a local minimum which does not need to be the global minimum of $\Omega(\{z_{aj}\})$

- this is similar to how the result of cone algorithm depends on the initial position for the cone iterations

- but here in contrast with the cone algorithm, we know which local minimum we should choose: the one that gives the smallest value of Ω smallest loss of physical information
Optimal Jet Finder – number of tries

- in order to find the global minimum or increase the probability of finding it, the program tries different random initial configurations

- OJF parameter: number of tries n_{tries}

- it was sufficient to take $n_{\text{tries}} \leq 10$
 (even $n_{\text{tries}} \sim 3$) in the cases we studied

- compromise between quality of jets found and computing time used, fully controlled
OJF – number of jets to be determined

1. assume some small positive parameter ω_{cut}, which is analogous to the jet resolution parameter y_{cut} in binary recombination algorithms

2. start with (for example) $n_{\text{jets}} = 1$

3. find the best configuration with the number of jets equal to n_{jets} as described previously (starting from n_{tries} different initial configurations and choosing the best configuration)

4. check if $\Omega < \omega_{\text{cut}}$

5. if so, this is the final jet configuration and the final number of jets is n_{jets}

6. if not, increase n_{jets} by 1 and go to point 3
OJF and cone algorithm

- in OJF shape of jets is determined dynamically based on the energy flow in the event
 -- no problem of jet overlaps!

- jets are not regular cones as they are represented in the cone algorithm
 but still nice convex shapes, good for studies of detector effects (energy corrections etc.)
 -- unlike kT jets
OJF and k_T

- OJF is much faster than k_T if a large number of calorimeter cells has to be analyzed.

- average time per event $\sim N_{\text{cells}}$ (number of cells in the event) for OJF whereas it is $\sim N_{\text{cells}}^3$ for k_T.

- it finds more regular jets that k_T.

- k_T merges only 2 particles at a time whereas OJF takes into account the global structure of the energy flow in the event, i.e.

- jet configuration is found from the momenta of all particles in the event.
Benchmark test: W-boson mass extraction

- benchmark test based on the W-boson mass extraction from the process:
 \[e^+ e^- \rightarrow W^+ W^- \rightarrow q_1 \bar{q}_2 q_3 \bar{q}_4 \rightarrow 4 \text{ jets} \]

- modeled on the OPAL analysis (CERN-EP-2000-099)

- we compared OJF with JADE and Durham (k_T) algorithm (the best algorithm used by the OPAL collaboration)

- we obtained the same accuracy as Durham (still we did not explore all possibilities)

- we studied the speed of OJF and we found that it is much faster than Durham when large number of calorimeter cells needs to be analysed
Quality of jets

the first truly scientific comparison

<table>
<thead>
<tr>
<th>ALGORITHM</th>
<th>statistical error of W-boson mass (corresponding to 1000 experimental events) based on Fisher’s information [MeV] (± 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durham (k_T)</td>
<td>105</td>
</tr>
<tr>
<td>JADE</td>
<td>118</td>
</tr>
<tr>
<td>OJF</td>
<td>106</td>
</tr>
</tbody>
</table>

powerful concept of optimal observables -- throw away your NN for this kind of problems

FT arxiv.org/physics 2000
Speed of OJF and k_T

- average analysis time per event:
 \[
 \approx 1.0 \times 10^{-4} \times N_{\text{cells}} \times n_{\text{tries}} \quad \text{for OJF}
 \]
 \[
 \approx 1.2 \times 10^{-8} \times N_{\text{cells}}^3 \quad \text{for } k_T
 \]

- k_T can not be applied directly at the level of calorimeter cells or even towers (D0 ~ 15000 cells, ATLAS ~ 200 000 cells)

- preclustering step is needed for k_T to reduce the initial data to ~ 200 preclusters

- how the preclustering affects measurements?

- it may be possible to apply OJF directly at the level of cells or towers

- or study how the preclustering step affects measurements

everything with OJF is under scientific control, no wooodoo...
Summary

- I presented the Optimal Jet Finder
- based on the global energy flow in the event
- infra-red and collinear safe: no seed-related problems
- no overlapping jets-related problems
- returns additional numerical characteristics of the jet configuration found (so called dynamical width and soft energy) which may be helpful in construction of (quasi-) optimal observables in statistical problems
- much faster than k_T for a large number of input cells
Future

- comprehensive testing is necessary

- extend to pp collisions: $Z/W + jets$; multi-jet channels, such as $tt \rightarrow (6+) \text{ jets}$

- noise and pile-up
- further optimizations possible
- ATLAS note in preparation

- C++ version of the code to use in the ATHENA framework

Royal pain ... coming any day now ...

Software = a huge hidden cost in physics (as elsewhere); something needs to be done ... but that is another story (workshop at CERN on March 10, 2004).
Two closely related developments:

Quasi-optimal observables see FT @ ACAT’02 and refs therein

POUZYRY see FT @ ACAT’03

A novel scheme to model arbitrary function from a random sample based on the same mathematical and algorithmic ideas as OJF = OJF-like pre-clustering + kernels

\[
\frac{1}{N} \sum_{n} f_n \delta(x - x_n) \rightarrow \frac{1}{P} \sum_{n} ^\sim f_p \delta(x - x_p) \quad \text{with } P \ll N
\]

\[
\rightarrow \frac{1}{P} \sum_{n} ^\sim f_p \frac{1}{R^\text{dim}} H \left(\frac{x - x_p}{R} \right)
\]

Pretty fast, works in any DIM, does essentially the same as the popular variant of NN

\[
\text{NN} \rightarrow g \left(\sum_{k} C_k g \left(A_k x_i + B_k \right) \right)
\]

But can handle *arbitrary* functions

C++ code will be made available *(what’s possible without GC)*