Charmonium physics on the lattice with highly improved staggered quarks

Eduardo Follana

Universidad de Zaragoza

(Nara, December 2008)
HPQCD collaboration

I. Allison (TRIUMF)
E. Dalgic (Simon Fraser University)
C.T.H. Davies (University of Glasgow)
R.R. Horgan (Cambridge University)
K. Hornbostel (Dallas Southern Methodist University)
G.P. Lepage (Cornell University)
Q. Mason (Cambridge University)
C. Mcneile (University of Glasgow)
J. Shigemitsu (The Ohio State University)
H. Trottier (Simon Fraser University)
K. Wong (University of Glasgow)
R.M. Woloshyn (TRIUMF)

Thanks: The MILC collaboration for making their configurations publicly available.
Outline

- Motivation.
- Improved Staggered quarks.
- Heavy quarks.
- Charm and bottom meson spectrum.
- Extracting parameters of QCD: charm and bottom quark masses.
- Outlook.
Motivation

- Low-energy QCD is a strongly-coupled QFT. We need non-perturbative tools to deal with it.
 - Other strongly-coupled sectors BSM?

- Lattice QCD provides a non-perturbative definition of QCD. It also provides a quantitative calculational tool. And lately it is also becoming a precise tool.

- To make precise calculations in QCD.
 - Test lattice field theory as a tool for studying strongly coupled field theories. (CLEO-с, f_D, f_{D_s})
 - To calculate theoretical quantities needed in the analysis of experimental data, for example, in the determination of elements of the CKM matrix.
 - To further test QCD as the theory of strong interactions.

- To deepen our understanding of the physics of QCD, for example, confinement.
LQCD: Quenched vs Unquenched

- Fermions are numerically very hard to include.
- Ignore fermion pair production \(\Rightarrow\) quenched QCD.

\[n_f = 2+1 \]

Plus the successful prediction of \(m_{B_c} \) (I. Allison et al).
(Some) systematic errors

- **Finite volume**: $m^{-1}_\pi \ll L$. In practice, $L \approx 2.5, 3\text{fm}$
- **Finite lattice spacing**: we need simulations at different values of a, to extrapolate to the continuum limit $a \to 0$.
 - To simulate at small values of a, while keeping the physical L constant is very expensive.
 - Typically, error $\propto a, a^2$
 - Improved actions (and operators) decrease the error, making the extrapolation from a given set of lattice spacings more precise.
- **Chiral extrapolation**: In practice, we are not able to simulate at physical values of the light quark masses $m_{u,d}$.
- **Lattice spacing determination**: Error in the determination of the lattice spacing in physical units (r_1).
Improved Staggered Quarks

- The staggered action describes 4 tastes (in 4D). The spectrum on the lattice has a multiplicity of states corresponding to the same continuum state. There are unphysical taste-changing interactions that lift the degeneracy between such states.
- These effects are lattice artifacts, of order a^2, and vanish in the continuum limit $a \to 0$. They involve at leading order the exchange of a gluon of momentum $q \approx \pi/a$.
- Taste-changing interactions perturbative for typical values of the lattice spacing, and can be corrected systematically a la Symanzik.

Smear the gauge field to remove the coupling between quarks and gluons with momentum π/a.

- In an unquenched simulation, $\sqrt[4]{\text{det.}} \to "\text{Rooting trick}"$.
Improved Staggered Actions

- **ASQTAD** (S. Naik, The MILC collaboration, P. Lepage)

 ![Diagram of ASQTAD action]

 - Discretization errors \(\approx O(\alpha_s a^2, a^4) \).
 - Substantially reduced taste-changing with respect to the unimproved action.

- **HISQ** (E.F., Q. Mason, C. Davies, K. Hornbostel, P. Lepage, H. Trottier.)

 - Discretization errors \(\approx O(\alpha_s a^2, a^4) \).
 - Substantially reduced taste-changing with respect to ASQTAD.

- **HISQ2, HISQ3, ...**

 - Taste-changing interactions can be further reduced.
Heavy Quarks

- The discretization errors grow with the quark mass as powers of am.
- For a direct simulation, we need:

 \[am_h \ll 1 \] (heavy quarks)
 \[La \gg m_\pi^{-1} \] (light quarks)

- Two scales. Difficult to do directly.
- Instead take advantage of the fact that m_h is large: \Rightarrow effective field theory (NRQCD, HQET). Very successful for b quarks.
Charm Quarks

- The charm quark is in between the light and heavy mass regime.

- Quite light for an easy application of NRQCD.

- Quite large for the usual relativistic quark actions, $am_c \sim 1$.

- However, if we use a very accurate action (HISQ) and fine enough lattices (MILC), it is possible to get accurate results.
 - Errors for HISQ: $O((am)^4, \alpha_s(am)^2)$.
 - Non-relativistic system: can be tuned for further suppression by factors of (v/c). Can reduce the errors to the few percent level.
 - Simple: use the same action in the heavy and the light sector. Conserved currents for c quarks (non-renormalization.)

- We will use this action both for heavy-heavy and heavy-light systems \Rightarrow consistency check.
Fixing the parameters

The free parameters in the lattice formulation are fixed by setting a set of calculated quantities to their measured physical values.

- Scale: lattice spacing a: Fixed through the upsilon ($b\bar{b}$) spectrum, $m_{\Upsilon(2S)} - m_{\Upsilon(1S)}$.

- Quark masses: m_u, m_d, m_s, m_c, m_b. Fixed by $m_\pi, m_K, m_{\eta_c}, m_{\Upsilon(1S)}$.

- In the HISQ charm quark formulation: improvement parameter ϵ. Fixed by requiring relativistic dispersion relation, $c^2 = 1$.
Configurations

- MILC ensembles: Improved gluon action and 2 + 1 ASQTAD sea quarks: \((m_l, m_l, m_s)\)

- \(a\) ranges between 0.06 and 0.16 fm.

- Physical \(m_s\).

- \(m_l = m_s/10\) to \(m_s/2.5\)
Taste splitting

- Doubling \rightarrow 16 lattice mesons.
- Taste-breaking interactions lift degeneracy \rightarrow taste-splitting.
- Can be reduced further with HISQ2, ...
Meson spectrum

The gold-plated meson spectrum from lattice QCD - HPQCD 2008

UNFLAVORED

FLAVORED

Expt
Fix parameters
Postdictions
Predictions

Meson Mass (GeV)
Charm and bottom quark mass

Work in collaboration with:

K.G. Chetyrkin (Universität Karlsruhe)
J.H. Kühn (Universität Karlsruhe)
M. Steinhauser (Universität Karlsruhe)
C. Sturm (Brookhaven National Laboratory)

- Bare lattice m_c (fixed through m_{η_c}) + lattice PT (2-loops). Very demanding. Combination of diagrammatic + high-β PT. Preliminary result: $m_c^{\overline{MS}}(3\text{GeV}) = 0.983(23)\text{GeV}$.

- Lattice current-current correlators + high-order cont. PT. $m_c^{\overline{MS}}(3\text{GeV}) = 0.986(10)\text{GeV}$. Most precise determination to date.
 Experimental e^+e^- data + cont. PT (Chetyrkin et al): $m_c^{\overline{MS}}(3\text{GeV}) = 0.986(13)\text{GeV}$
Method of moments

\[G(t) \equiv a^6 \sum_x (am_{0c})^2 \langle 0| j_5(x, t)j_5(0, 0)|0 \rangle \]

\[j_5 = \bar{\psi}_c \gamma_5 \psi_c \]

- Mass factors \(\rightarrow \) independent of the cutoff in the continuum limit (PCAC).
- \(G_{\text{cont}}(t) = G_{\text{lat}}(t) + \mathcal{O}(a^2) \)

\[G_n = \sum_t (t/a)^n G(t) \]

Low \(n \) moments perturbative \((m_c \text{ large}) \).

\[G_n = g_n (\alpha_{\overline{MS}}(\mu), \mu/m_c) \]

\[\frac{1}{(am_c(\mu)))^{n-4}} \]
Moments

Better to use \textit{reduced} moments:

\[R_n \equiv \begin{cases} G_4 / G_4^{(0)} & n = 4 \\ \frac{am_{\eta_c}}{2am_{(0)}^{pole,c}} \left(G_n / G_n^{(0)} \right)^{1/(n-4)} & n \geq 6 \end{cases} \]

\[R_n = \begin{cases} r_4(\alpha_{\overline{MS}}(\mu), \mu / m_c) & n = 4 \\ \frac{r_n(\alpha_{\overline{MS}}(\mu), \mu / m_c)}{2m_c(\mu) / m_{\eta_c}} & n \geq 6 \end{cases} \]

\[m_c(\mu) = \frac{m_{\eta_c}^{exp} r_n^{PQCD}}{2} \frac{r_n^{LQCD}}{R_n^{LQCD}} \]

\[R_4^{LQCD} = r_4(\alpha_{\overline{MS}}, \mu / m_c) \]
Continuum and sea quark mass extrapolation.

\[R_n(a) = R_n(0) \left(1 + c_1 \alpha_s(\alpha m_c)^2 + c_2 \alpha_s(\alpha m_c)^4 + \cdots \right) \]
\[\left(1 + d_1(2m_u/d + m_s)/mc + \cdots \right) \]
Results for m_c

$m_c(3\text{GeV}) = 0.986(10)\text{GeV}$

$m_c(m_c) = 1.268(9)\text{GeV}$

Continuum determination from vector current and experimental $R(e^+e)$:

$mc(3\text{GeV}) = 0.986(13)\text{GeV}$

\triangleright Same method can be used for m_b. Work in progress.

$m_c(3\text{GeV})$ error budget from R_6 in %

- a^2 extrapolation 0.2
- perturbation theory 0.4
- $\alpha_{\overline{MS}}$ uncertainty 0.3
- gluon condensate 0.3
- statistical errors 0.1
- m_0c errors from r_1/a 0.5
- m_0c errors from r_1 0.6
- $m_{u/d/s}$ extrapolation 0.2
- finite volume 0.1

Total 1.0
Light quark masses

- Leverage the precision on m_c to get to m_s and m_l.
- Feasible because we use the same action for both charm and light quarks.

![Graph showing the relationship between bare m_c and a^2 / fm^2]
Conclusions and outlook

- The use of a highly improved quark action and fine enough lattices provides a very good way of studying systems with charm quarks from first principles.
- Direct determination of \(m_c \) from the lattice and from current-current correlators + continuum PT.
- Accurate \(m_c/m_s \).
- Semileptonic form factors: \(D \rightarrow \pi \ell \nu, D \rightarrow K \ell \nu \)
- Leptonic decay width \(\psi \rightarrow e^+e^- \). Known accurately from experiment (\(\sim 2\% \)).
Results for α_s

\[\alpha_{\overline{\text{MS}}}(M_Z, n_f = 5) = 0.1174(12) \]

World average: 0.1189(10)
(S. Bethke, Prog.Part.Nucl.Phys.58,2007)

error budget from
\[R_4 \text{ in } \% \]

<table>
<thead>
<tr>
<th>Source</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^2 extrapolation</td>
<td>0.4</td>
</tr>
<tr>
<td>perturbation theory</td>
<td>0.6</td>
</tr>
<tr>
<td>$m_c(\mu)$ uncertainty</td>
<td>0.1</td>
</tr>
<tr>
<td>gluon condensate</td>
<td>0.4</td>
</tr>
<tr>
<td>statistical errors</td>
<td>0.2</td>
</tr>
<tr>
<td>m_{0c} errors from r_1/a</td>
<td>0.3</td>
</tr>
<tr>
<td>m_{0c} errors from r_1</td>
<td>0.1</td>
</tr>
<tr>
<td>$m_u/d/s$ extrapolation</td>
<td>0.2</td>
</tr>
<tr>
<td>finite volume</td>
<td>0.0</td>
</tr>
<tr>
<td>$\mu \rightarrow M_Z$ evolution</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Total: 1.0