New mechanisms and open problems in quarkonium production

J.P. Lansberg
SLAC – Stanford U.

International Workshop on Heavy Quarkonia 2008
Nara Women’s University, Japan
2-5 December 2008

Many thanks to my collaborators
Part I

Past (up to 2007)
Basic pQCD approach: the Colour Singlet Model (CSM)

- Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - on-shell (\times)
 - in a colour singlet state
 - with a vanishing relative momentum
 - in a 3S_1 state (for J/ψ, ψ' and Υ)
- Non-perturbative binding of quarks

→ Schrödinger wave function
Basic pQCD approach: the Colour Singlet Model (CSM)

Perturbative creation of 2 quarks Q and \bar{Q} BUT

- on-shell (\times)
- in a colour singlet state
- with a vanishing relative momentum
- in a 3S_1 state (for J/ψ, ψ' and Υ)

Non-perturbative binding of quarks \rightarrow Schrödinger wave function

\[\alpha_s^3 \frac{(2m_Q)^4}{P_T^8} \]

CDF, PRL 79:572 & 578, 1997
CDF, PRL 88:161802, 2002

\[\text{BR}(J/\psi \rightarrow \mu^+ \mu^-) \frac{d\sigma(pp \rightarrow J/\psi + X)}{dp_T} \text{ (mb/GeV)} \]
\[\sqrt{s} = 1.8 \text{ TeV}; |\eta| < 0.6 \]

LO colour-singlet

J.P. Lansberg (SLAC – Stanford U.)
Basic pQCD approach: the Colour Singlet Model (CSM)

- Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - on-shell (\times)
 - in a colour singlet state
 - with a vanishing relative momentum
 - in a 3S_1 state (for J/ψ, ψ' and Υ)

- Non-perturbative binding of quarks

$\sum \alpha_s \frac{(2m_Q)^4}{P_T^8}$

\Rightarrow Schrödinger wave function

CDF, PRL 88:161802, 2002

CDF, PRL 79:572 & 578, 1997
Basic pQCD approach: the Colour Singlet Model (CSM)

- Perturbative creation of 2 quarks Q and \bar{Q} BUT
 - on-shell (\times)
 - in a colour singlet state
 - with a vanishing relative momentum
 - in a 3S_1 state (for J/ψ, ψ' and Υ)

- Non-perturbative binding of quarks \rightarrow Schrödinger wave function
J/ψ production in $\gamma\gamma$ collisions at LEP II

$e^+e^- \rightarrow e^+e^- J/\psi X$ at LEP2

- DELPHI prelim.
- MRST98 fit
- CTEQ5 fit
- $\sqrt{S} = 197$ GeV
- $-2 < y_{J/\psi} < 2$

CSM

DELPHI, PLB 565 76, 2003
J/ψ photoproduction at HERA

LO CSM also fails in photoproduction at HERA...

E.g. H1, EPJC 25, 2, 2002; ZEUS, EPJC 27, 173, 2003
J/ψ photoproduction at HERA

LO CSM also fails in photoproduction at HERA...

However NLO CSM is in agreement the data!

NLO revisited: see P. Artoisenet’s talk
Why does the CSM fail?

Why does the CSM (basic pQCD approach) fail?

Specifically large QCD-corrections? Why so?

hints: NLO contributions for γp, P_T scaling of fragmentation channels: $\frac{1}{P^4_T}$ vs. $\frac{1}{P^8_T}$
Why does the CSM fail?

Why does the CSM (basic pQCD approach) fail?

- Specifically large QCD-corrections? Why so?
 hints: NLO contributions for γp, P_T scaling of fragmentation channels: $\frac{1}{P_T^4}$ vs. $\frac{1}{P_T^8}$

- Hypotheses/constraints of the model too strong?
Why does the CSM fail?

- Specifically large QCD-corrections? Why so?
 hints: NLO contributions for γp, P_T scaling of fragmentation channels: $\frac{1}{P_T^4}$ vs. $\frac{1}{P_T^8}$

- Hypotheses/constraints of the model too strong?

→ Should the pair be perturbatively produced in a color singlet? Can’t it evolve?
 e.g. Colour Octet Mechanism, Colour Evaporation Model
Why does the CSM fail?

Why does the CSM (basic pQCD approach) fail?

Specifically large QCD-corrections? Why so?

Hints: NLO contributions for γp, P_T scaling of fragmentation channels: $\frac{1}{P_T^4}$ vs. $\frac{1}{P_T^8}$

Hypotheses/constraints of the model too strong?

Should the pair be perturbatively produced in a color singlet? Can't it evolve?

e.g. Colour Octet Mechanism, Colour Evaporation Model

Can't the quarks be produced off-shell? with relative momentum $\neq 0$?

s-channel cut contribution

For a recent review of various solutions proposed, see e.g. JPL IJMPA 21 3857-3915 (2006)
Why does the CSM fail?

One of the solutions proposed: the Color Octet Mechanism

Color Octet Mechanism: physical states can be produced by *coloured pairs*

Bodwin, Braaten, Lepage, Cho, Leibovich,...

Experimentally, this is clearly contradicted!

\[
\alpha = +1 \Leftrightarrow \text{Transverse}, \quad \alpha = 0 \Leftrightarrow \text{Unpolarised}, \quad \alpha = -1 \Leftrightarrow \text{Longitudinal}
\]

<table>
<thead>
<tr>
<th>(GeV/c)</th>
<th>TP</th>
<th>CDF Data</th>
<th>NRQCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\alpha = -1 \]

J.P. Lansberg (SLAC – Stanford U.)
One of the solutions proposed: the Color Octet Mechanism

Color Octet Mechanism: physical states can be produced by coloured pairs

Bodwin, Braaten, Lepage, Cho, Leibovich, ...

→ $J/\psi, \psi'$ and Υ can be produced by a single gluon

 ✓ Gluon fragmentation then LO in α_s: larger rates

$\langle \text{GeV/c} \rangle$

T_P

α

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

CDF Data
NRQCD

J/ψ

Υ

$\langle \text{GeV/c} \rangle$

T_P

α

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

CDF Data
NRQCD

$\Psi(2S)$

CDF, PRL 99: 132001, 2007
One of the solutions proposed: the Color Octet Mechanism

Color Octet Mechanism: physical states can be produced by coloured pairs

- J/ψ, ψ' and Υ can be produced by a single gluon
- Gluon fragmentation then LO in α_S: larger rates
- When $P_{\text{gluon}} \gg$, the gluon is nearly on-shell and transversally pol.
- NRQCD spin symmetry: Q has the same polarisation as the gluon

Bodwin, Braaten, Lepage, Cho, Leibovich,...
Why does the CSM fail?

One of the solutions proposed: the Color Octet Mechanism

Color Octet Mechanism: physical states can be produced by coloured pairs

- J/ψ, ψ' and Υ can be produced by a single gluon
- Gluon fragmentation then LO in α_s: larger rates
- When $P_{\text{gluon}} \gg 1$, the gluon is nearly on-shell and transversally pol.
- NRQCD spin symmetry: Q has the same polarisation as the gluon

* Experimentally, *this is clearly contradicted*!

$$\alpha = +1 \iff \text{Transverse} \quad \alpha = 0 \iff \text{Unpolarised} \quad \alpha = -1 \iff \text{Longitudinal}$$
Part II

Present
Describing the low-P_T region: the s-channel cut

So far, one considered only such configurations
idem for NRQCD

\[Q \]

CSM CUT

\[\text{JPL, J.R. Cudell, Yu.L. Kalinovsky, PLB633:301, 2006} \]

A bit challenging:
- Quark relative momentum not fixed to zero; 2 more integrals
- $c - \bar{c} - Q$ vertex has one leg off-shell

Introduction of a 4-point function – the $c - \bar{c} - Q - g$ coupling – to preserve gauge-invariance
Describing the low-P_T region: the s-channel cut

📈 So far, one considered only such configurations idem for NRQCD

🔍 What about those? (i.e. the usual contributions to $\text{Im}(\mathcal{M})$)

JPL, J.R. Cudell, Yu.L. Kalinovsky, PLB633:301,2006

© Quark relative momentum not fixed to zero; 2 more integrals
© $c\bar{c}-Q$ vertex has one leg off-shell
Describing the low-\(P_T\) region: the s-channel cut

- So far, one considered only such configurations idem for NRQCD

- What about those? (i.e. the usual contributions to \(Im(M)\))

- A bit challenging:
 - Quark relative momentum not fixed to zero; 2 more integrals
 - \(c - \bar{c} - Q\) vertex has one leg off-shell

Introduction of a 4-point function – the \(c - \bar{c} - Q - g\) coupling – to preserve gauge-invariance
The s-channel cut contribution: first evaluation

If the $c - \bar{c} - Q - g$ coupling is constrained to satisfy:

→ gauge invariance,
→ low energy limit,
→ scaling limit,

it can be parametrised using two constants.
The s-channel cut contribution: first evaluation

If the $c - \bar{c} - Q - g$ coupling is constrained to satisfy:

→ gauge invariance,
→ low energy limit,
→ scaling limit,

it can be parametrised using two constants.

If those are fixed to fit Tevatron data up to mid P_T:

\[
\frac{d\sigma}{dP_T} \cdot |\eta| < 0.6 \times \text{Br} \quad (\text{nb/GeV})
\]

\[
\begin{align*}
\text{CDF data} & \quad \sigma_{\text{tot}} \\
\text{LO CSM: } J/\psi + cc & \quad \sigma_{L} \\
\text{LO CSM: } J/\psi + g & \quad \sigma_{T}
\end{align*}
\]

PHENIX data are very well described!

This has to be tested: $ep, \gamma\gamma \rightarrow \text{Need for more observables!}$

What about the real part?
The s-channel cut contribution: first evaluation

If the $c - \bar{c} - Q - g$ coupling is constrained to satisfy:

→ gauge invariance,
→ low energy limit,
→ scaling limit,

it can be parametrised using two constants.

If those are fixed to fit Tevatron data up to mid P_T:

PHENIX data are very well described!
The s-channel cut contribution: first evaluation

H. Haberzettl, J.P.L, PRL 100,032006,2008

If the \(c - \bar{c} - Q - g\) coupling is constrained to satisfy:
- gauge invariance,
- low energy limit,
- scaling limit,

it can be parametrised using two constants.

If those are fixed to fit Tevatron data up to mid \(P_T\):

PHENIX data are very well described!

- s-channel cut contributions are large, specifically at small \(P_T\)
- This has to be tested: \(ep, \gamma\gamma\) → Need for more observables!
- What about the real part?
Describing the low-\(P_T\) region: the s-channel cut

The s-channel cut contribution: first prediction verified!

H. Haberzettl, J.P.L, PRL 100,032006,2008
M. Donadelli, for the PHENIX Collab, talk at PANIC 2008, Nov.2008

\[
\begin{array}{c|c}
|y| < 0.35 & |y| \in [1.2,2.2] \\
\hline
\text{s-channel cut} & \text{s-channel cut} \\
\end{array}
\]

Quarkonium production

J.P. Lansberg (SLAC – Stanford U.)

Quarkonium production

J.P. Lansberg (SLAC – Stanford U.)
The s-channel cut contribution: first prediction verified!

H. Haberzettl, J.P.L, PRL 100,032006, 2008
M. Donadelli, for the PHENIX Collab, talk at PANIC 2008, Nov. 2008

![Graph showing the s-channel cut contribution with data points and a fit curve.](image-url)
Describing the mid- and high-P_T region: QCD corrections

$J/\psi + \bar{c}c$: P. Artoisenet, J. P. L, F. Maltoni, PLB 653:60, 2007

Significant improvement, but we need something more. . .

Confirmed by B. Gong and J. X. Wang who computed the polarisation as well

What about for the Υ?

J. P. Lansberg (SLAC – Stanford U.)
Describing the mid- and high-P_T region: QCD corrections

$J/\psi + c\bar{c}$: P. Artoisenet, J. P. L. F. Maltoni, PLB 653:60, 2007

CDF data $J/\psi + g$

J/ψ production at the Tevatron
sqrt(s) = 1.8 TeV

$\frac{d\sigma}{dP_T}|_{\eta < 0.6} \cdot Br$ (nb/GeV)

P_T (GeV)

Br: 5.88%, $<0>: 1.16$ GeV

$\mu_0/(2 < \mu_f < 2 \mu_0)$

1.4 GeV $< m_c < 1.6$ GeV

CDF data $J/\psi + g$

Significant improvement, but we need something more...
Describing the mid- and high-\(P_T \) region: QCD corrections

\(J/\psi + c\bar{c} \): P. Artoisenet, J.P. L, F. Maltoni, PLB 653:60, 2007

NLO (e.g. \(J/\psi + gg \)): J. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002, 2007

\[\frac{d\sigma}{dP_T} |_{\eta < 0.6} \cdot \text{Br} \quad (\text{nb/GeV}) \]

\(P_T \) (GeV)

CDF data
\(J/\psi + g \)
\(J/\psi + cc \)

unc. band:
\(\mu_0/2 < \mu_{f,r} < 2 \mu_0 \)

1.4 GeV < \(m_c < 1.6 \) GeV

J/\psi production at the Tevatron
\(\sqrt{s} = 1.8 \) TeV

Br: 5.88 %, <\(0 >: 1.16 \) GeV

\(\mu_0 = (4m_b^2 + P_T^2)^{1/2} \)

Significant improvement, but we need something more. . .

Confirmed by B. Gong and J.X. Wang who computed the polarisation as well

What about for the \(\Upsilon \)?
Describing the mid- and high-\(P_T\) region: QCD corrections

\[J/\psi + c\bar{c}: \text{P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007} \]

\[\text{NLO (e.g.} J/\psi + gg): \text{J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007} \]

- Significant improvement, but we need something more...
- Confirmed by B. Gong and J.X. Wang who computed the polarisation as well

\[\text{Phys. Rev. Lett. 100, 232001 (2008)} \]

What about for the \(\Upsilon\)?
Describing the mid- and high-P_T region: QCD corrections

QCD corrections: α_s^4 (NLO) for Υ

$\Upsilon + c\bar{c}$: P. Artoisenet, J.P. L, F. Maltoni, PLB 653:60,2007

NLO (e.g. $\Upsilon + gg$): J. Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007

Graph:

- **Legend:**
 - LO
 - $\Upsilon + bb$
 - NLO
 - $\Upsilon (1S)$ prompt data $x F_{\text{direct}}$

Axes:
- $d\sigma/dP_T |_{|y|<0.4} \times Br$ (pb/GeV)
- P_T (GeV)

Close to an agreement with data

Can we do better?
NLO QCD corrections to the Colour Octet Mechanism

- NLO corrections to COM channels have tiny effects on $d\sigma/dt$ and α
NLO QCD corrections to the Colour Octet Mechanism

- NLO corrections to COM channels have tiny effects on $d\sigma/dt$ and α

NLO QCD corrections to the Colour Octet Mechanism

- NLO corrections to COM channels have tiny effects on $d\sigma/dt$ and α

- Confirmation that COM cannot describe the polarisation

- We definitely need something else!
Describing the mid- and high-P_T region: QCD corrections

α_s^5 contributions: NNLO*

MadOnia: Automatic generation of tree-level quarkonium amplitudes

Validation at α_s^4: the full NLO is amazingly well reproduced by $jj \rightarrow Qjj$.

$\bar{p}p \rightarrow Qjjj (j=g,u,d,s,c)$ with cuts:

First estimate of the impact of NNLO contributions (α_s^5).
Describing the mid- and high-P_T region: QCD corrections

\[\alpha_s^5 \text{ corrections contributions: NNLO}^* \]

- New P_T^{-4} process at α_s^5: $gg \rightarrow Qggg$
- Normally accounted by gluon fragmentation

Let us check!
Describing the mid- and high-P_T region: QCD corrections

\(\alpha_s^5 \) contributions: \textbf{NNLO}\(^*\)

\rightarrow New P_T^{-4} process at α_s^5: $gg \rightarrow Qggg$

\rightarrow Normally accounted by gluon fragmentation

\rightarrow We propose to evaluate the α_s^5 contributions by computing $jj \rightarrow Qjjj$

generated by MadOnia and imposing cuts on the kinematics

\rightarrow MadOnia: Automatic generation of tree-level quarkonium amplitudes

Describing the mid- and high-P_T region: QCD corrections

\[\alpha_s^5 \] corrections contributions: NNLO*

- New P_T^{-4} process at α_s^5: $gg \rightarrow Qggg$
- Normally accounted by gluon fragmentation
- We propose to evaluate the α_s^5 contributions by computing $jj \rightarrow Qjjj$ generated by MadOnia and imposing cuts on the kinematics
- MadOnia: Automatic generation of tree-level quarkonium amplitudes

Validation at α_s^4: the full NLO is amazingly well reproduced by $jj \rightarrow Qjj$
Describing the mid- and high-P_T region: QCD corrections

α_s^5 corrections contributions: NNLO*

- New P_T^{-4} process at α_s^5: $gg \rightarrow Qggg$
- Normally accounted by gluon fragmentation
- We propose to evaluate the α_s^5 contributions by computing $jj \rightarrow Qjjj$
 generated by MadOnia and imposing cuts on the kinematics
- MadOnia: Automatic generation of tree-level quarkonium amplitudes

Validation at α_s^4: the full NLO is amazingly well reproduced by $jj \rightarrow Qjj$

$p\bar{p} \rightarrow Qjjj \ (j = g, u, d, s, c)$ with cuts:

- first estimate of the impact of NNLO contributions (α_s^5)
Describing the mid- and high-P_T region: QCD corrections

α_s^5 corrections contributions: NNLO

$\frac{d\sigma}{dP_T}|_{|y|<0.4} \times Br (\text{pb}/\text{GeV})$

P_T (GeV)

$\Upsilon (1S)$ prompt data $\times F^{\text{direct}}$

LO

$\Upsilon + \bar{b}b$

NLO

Exactly what is needed in normalisation and shape!

J.P. Lansberg (SLAC – Stanford U.)

Quarkonium production

QWG2008 – 5 Dec. 2008 16 / 27
Describing the mid- and high-P_T region: QCD corrections

α_s^5 corrections contributions: NNLO*

Exactly what is needed in normalisation and shape!

J.P. Lansberg (SLAC – Stanford U.)
Describing the mid- and high-\(P_T\) region: QCD corrections

\[\alpha_s^5 \]

Contributions: NNLO*

\[\frac{d\sigma}{dP_T} \big|_{|y|<0.6} \times Br \ (nb/GeV) \]

\(P_T\) (GeV)

\(\psi(2S)\) prelim. CDF data at 1.96 TeV

\(\psi' + cc\)

NLO

NNLO

See A. Annovi’s talk

J.P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)
Describing the mid- and high-P_T region: QCD corrections

α_s^5 corrections contributions: NNLO

P. Artoisenet, AIP Proc. Conf 1038
J.P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

ψ(2S) prelim. CDF data at 1.96 TeV
ψ' +CC
NLO
NNLO

\checkmark Nearly as good as for Υ

See A. Annovi’s talk
Describing the mid- and high-P_T region: QCD corrections

α_s^5 corrections contributions: NNLO*

\[\frac{d\sigma}{dP_T|_{|y|<0.6}} \times \text{Br} \ (\text{nb/GeV}) \]

$\psi(2S)$ prelim. CDF data at 1.96 TeV

ψ' +cc

NLO

NNLO

See A. Annovi’s talk

✓ Nearly as good as for Υ

✗ Still a small gap opening at large P_T: CO? Any Ideas?
Describing the mid- and high-\(P_T\) region: QCD corrections

\[\alpha_s^5 \text{ corrections contributions: NNLO}^* \]

P. Artoisenet, AIP Proc. Conf 1038
J. P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

\[\frac{d\sigma}{dP_T}\big|_{|y|<0.6} \times Br \ (\text{nb/GeV}) \]

\[P_T \ (\text{GeV}) \]

ψ(2S) prelim. CDF data at 1.96 TeV

\[\psi' + cc \]

NLO

NNLO

\[\text{See A. Annovi's talk} \]

✔ Nearly as good as for ψ

✗ Still a small gap opening at large \(P_T\): CO? Any Ideas?

✗ Large uncertainty attached to the choice of \(\mu_r\)
Describing the mid- and high-P_T region: QCD corrections

Υ and J/ψ polarisation in hadroproduction at $O(\alpha_S^5)$

J.P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

→ Cross sections seem OK (still not clear for ψ)
→ Polarisation ?
Describing the mid- and high-P_T region: QCD corrections

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

J. P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

→ Cross sections seem OK (still not clear for ψ)

→ Polarisation?

![Graph showing α vs P_T for different order calculations and for $\Upsilon + bb$, Υ, and J/ψ](image)

$\alpha = \frac{(\sigma_T - 2\sigma_L)}{(\sigma_T + 2\sigma_L)}$

![Graph showing α vs P_T for $\psi(2S)$ CDF data at $s^{1/2} = 1.96$ TeV](image)

$\alpha = \frac{(\sigma_T - 2\sigma_L)}{(\sigma_T + 2\sigma_L)}$

Comparison with prompt measurements from CDF and D^0?

Feed-down from χ_c, χ_b not known at NLO

"Q polarization in HI collisions as a possible signature of the QGP"

"The QGP is expected to screen away the nonperturbative physics; therefore those quarkonia which escape from the plasma should possess polarization as predicted by perturbative QCD. We estimate the expected J/ψ polarization at small P_T, and find that $\alpha \approx 0.35 - 0.4$.

A priori no longer valid in view of the (N)NLO results..."
Describing the mid- and high-P_T region: QCD corrections

ϒ and J/ψ polarisation in hadroproduction at $O(\alpha_S^5)$

J.P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

→ Cross sections seem OK (still not clear for ψ)

→ Polarisation?

![Graph showing polarisation vs. P_T](image)

→ Comparison with prompt measurements from CDF and $D\phi$?

→ Feed-down from χ_c, χ_b not known at NLO
Describing the mid- and high-P_T region: QCD corrections

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

J.P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

→ Cross sections seem OK (still not clear for ψ)
→ Polarisation?

$\alpha = (\sigma_T - 2\sigma_L)/(\sigma_T + 2\sigma_L)$

P_T (GeV)

LO $\Upsilon + bb$
NLO
NNLO#

Direct $\psi(2S)$ CDF data at $s^{1/2} = 1.96$ TeV
NLO
NNLO#

→ Comparison with prompt measurements from CDF and $D\phi$?
→ Feed-down from χ_c, χ_b not known at NLO
→ “Q polarization in HI collisions as a possible signature of the QGP”

“The QGP is expected to screen away the nonperturbative physics; therefore those quarkonia which escape from the plasma should possess polarization as predicted by perturbative QCD. We estimate the expected J/ψ polarization at small P_T, and find that $[\ldots] \alpha \simeq 0.35 - 0.4.$”
Describing the mid- and high-P_T region: QCD corrections

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

J. P. Lansberg, 0811.4005 [hep-ph], to appear in EPJC (proceedings of HP 2008)

→ Cross sections seem OK (still not clear for ψ)

→ Polarisation?

$\alpha = (\sigma_T - 2\sigma_L)/(\sigma_T + 2\sigma_L)$

P_T (GeV)

-1 0 1

10 15 20 25 30 35 40 45 50

LO $\Upsilon + bb$
NLO
NNLO

Direct ψ(2S) CDF data at $s^{1/2}=1.96$ TeV

$\alpha = (\sigma_T - 2\sigma_L)/(\sigma_T + 2\sigma_L)$

P_T (GeV)

-1 0 1

5 10 15 20 25 30 35 40 45 50

NLO
NNLO

→ Comparison with prompt measurements from CDF and $D\phi$?

→ Feed-down from χ_c, χ_b not known at NLO

→ “Q polarization in HI collisions as a possible signature of the QGP”

“The QGP is expected to screen away the nonperturbative physics; therefore those quarkonia which escape from the plasma should possess polarization as predicted by perturbative QCD. We estimate the expected J/ψ polarization at small P_T, and find that [...] $\alpha \simeq 0.35 - 0.4$.”

A priori no longer valid in view of the (N)NLO results...
What about RHIC results?
Describing the mid- and high-P_T region: QCD corrections

What about RHIC results?

NLO* curves calculated yesterday to compare with prelim. STAR data

* thanks to T. Ullrich

\[
\frac{1}{2\pi P_T} \frac{d\sigma}{dP_T dy} |_{|y|<1.0} \times Br
\]

Prelim. STAR (incl. B feed-down)
Prelim. CSM at NLO* (NO χ_c + B feed-down)

$\mu = 0.5 (m_c^2 + P_T^2)^{1/2}, 2m_c^2 < s_{ij}^{\min} < 4m_c^2$

We shall add NNLO* and χ_c + B feed-down

The discrepancies between CSM results and data are now everywhere below a factor of 3!
What about RHIC results?

NLO* curves calculated yesterday to compare with prelim. STAR data

\[\frac{1}{2\pi} \frac{d\sigma}{dP_T dy} \mid_{|y|<1.0} \times Br \]

The discrepancies between CSM results and data are now everywhere below a factor of 3!
Part III

Future
Need for more observables!

New observable: $Q + Q\bar{Q}$

- Double charm/beauty HADRO-production should show large rates
- let us see how it can be a new valuable observable

New observable: $Q + Q\bar{Q}$

- Double charm/beauty HADRO-production should show large rates
 let us see how it can be a new valuable observable

it can
- probe the colour-singlet part alone: $(d\sigma/dp_T$ and $\alpha(p_T)$)
New observable: $Q + Q\bar{Q}$

Double charm/beauty HADRO-production should show large rates.
Let us see how it can be a new valuable observable.

It can:
- Probe the colour-singlet part alone: $(d\sigma/dp_T$ and $\alpha(p_T)$)
- Test factorisation/the universality of the colour-octet matrix elements
New observable: $Q + Q\bar{Q}$

- **Double** charm/beauty HADRO-production should show large rates
 - let us see how it can be a new valuable observable

it can

- probe the colour-singlet part alone: $(d\sigma/dp_T$ and $\alpha(p_T)$)
- test factorisation/the universality of the colour-octet matrix elements
- –in general– test many models which provided mostly “postdictions”
New observable: $Q + Q\bar{Q}$

- **Double** charm/beauty HADRO-production should show large rates
- let us see how it can be a new valuable observable

it can

- probe the colour-singlet part alone: $(d\sigma/dp_T$ and $\alpha(p_T))$
- test factorisation/the universality of the colour-octet matrix elements
- –in general– test many models which provided mostly “postdictions”
- and it is insensitive to the 4-point coupling $c\bar{c}\psi g$ (no final-state gluon)
Need for more observables!

New observable: $Q + Q\bar{Q}$

- **Double** charm/beauty HADRO-production should show large rates
 - let us see how it can be a new valuable observable

 it can
 - → probe the colour-singlet part alone: $(d\sigma/dp_T$ and $\alpha(p_T))$
 - → test factorisation/the universality of the colour-octet matrix elements
 - → –in general– test many models which provided mostly “postdictions”
 - → and it is insensitive to the 4-point coupling $c\bar{c}\psi g$ (no final-state gluon)

- On the pure theory side
 - → Part of the NLO QCD-corrections to **inclusive** production $(pp \to QX)$
 - which contains e.g. $\frac{1}{p_T^4}$ contributions
 - → **Test of the fragmentation approximation**
 - → NRQCD factorisation? **Colour transfer mechanism?**

Need for more observables!

$Q + Q\bar{Q}$: CSM vs. COM

If we ignore changes in the fits of COM matrix elements due to QCD corrections:
- CSM contributions dominate at low P_T.
- COM contributions dominate from $P_T \geq 15$ GeV.

Integrated cross section largely dominated by CSM contributions.

Can rely on CSM predictions for α for $P_T \leq 15$ GeV.
If we ignore changes in the fits of COM matrix elements due to QCD corrections:
If we ignore changes in the fits of COM matrix elements due to QCD corrections:

- CSM contributions dominate at low P_T
- COM contributions dominate from $P_T \geq 15$ GeV
Q + Q̅Q: CSM vs. COM

If we ignore changes in the fits of COM matrix elements due to QCD corrections:

- **CSM contributions dominate at low** P_T
- **COM contributions dominate from** $P_T \geq 15$ GeV
- **Integrated cross section largely dominated by CSM contributions**
- **Can rely on CSM predictions for** α **for** $P_T \leq 15$ GeV
Q + Q̅Q: polarisation

P. Artoisenet, J.P.L, F. Maltoni, PLB 653:60, 2007

![Graphs showing polarisation with COM ("old" matrix elements)](image-url)
Need for more observables!

$\mathcal{Q} + \mathcal{Q}\bar{Q}$: polarisation

$J/\psi + c\bar{c}$: polarisation with COM ("old" matrix elements)

P. Artoisenet, J.P.L, F. Maltoni, PLB 653:60, 2007

P. Artoisenet, private communication
Need for more observables!

New observables: production via $\gamma\gamma$ in Ultra-Peripheral Collisions at the LHC

Graphs showing the production of $J/\psi + X$ via direct $\gamma\gamma$ fusion in pp collisions at 14 TeV and PbPb collisions at 5.5 TeV.

Quarkonium production

J.P. Lansberg (SLAC – Stanford U.)

24 / 27
New observables: production via $\gamma\gamma$ in Ultra-Peripheral Collisions at the LHC

- $\gamma\gamma \rightarrow J/\psi c\bar{c}$ yield is significant for $P_T \gtrsim m_c$
New observables: production via $\gamma \gamma$ in Ultra-Peripheral Collisions at the LHC

- $\gamma \gamma \rightarrow J/\psi c\bar{c}$ yield is significant for $P_T \gtrsim m_c$
- but small rates (negligible for $\Upsilon + b\bar{b}$)
New observables: production via $\gamma\gamma$ in Ultra-Peripheral Collisions at the LHC

- $\gamma\gamma \rightarrow J/\psi c\bar{c}$ yield is significant for $P_T \gtrsim m_c$
- but small rates (negligible for $\Upsilon + b\bar{b}$)
- we need to include resolved and double resolved contributions, before going further
Part IV

Conclusions and Outlooks
Conclusions and Outlooks

- LO pQCD (CSM) fails (nearly) everywhere
Conclusions and Outlooks

- LO pQCD (CSM) fails (nearly) everywhere
- No totally satisfactory solution
Conclusions and Outlooks

- **LO pQCD (CSM) fails** (nearly) everywhere
- No totally satisfactory solution
- **Colour Octet Mechanism**
 - (although) less predictive
 - **contradicted** by polarisation measurements at the Tevatron
 - excessive for γp
 - NRQCD may be ok, but the dominance of COM seems not
Conclusions and Outlooks

- **LO pQCD (CSM) fails** (nearly) everywhere
- No totally satisfactory solution
- **Colour Octet** Mechanism
 - (although) **less predictive**
 - contradicted by polarisation measurements at the Tevatron
 - excessive for γp
 - NRQCD may be ok, but the dominance of COM seems not
- **Off-shell effects** via s-channel cut contributions are large at low P_T
 - Best description of low P_T data: $d\sigma/dP_T$ and α
Conclusions and Outlooks II

... but QCD-corrections bring agreements in

- γp for J/ψ
- e^+e^- for $J/\psi + \eta_c$
- pp for $\Upsilon (J/\psi)$

Time has come for another look ? new observables ? on the one hand, avoiding the presence of Colour Octets on the other hand, testing the presence ofColour Octets and for which QCD-corrections will not open new (dominant) channels (first) new observable:

Other proposals are welcome!

J.P. Lansberg (SLAC – Stanford U.)
Conclusions and Outlooks II

... but QCD-corrections bring agreements in

- γp for J/ψ
- e^+e^- for $J/\psi + \eta_c$
- pp for $\Upsilon (J/\psi)$

Time has come for another look? new observables?

- on the one hand, avoiding the presence of Colour Octets
- on the other hand, testing the presence of Colour Octets
- and for which QCD-corrections will not open new (dominant) channels

Q$^+Q^-\bar{Q}$, R. Li and J. X. Wang, arXiv:0811.0963 [hep-ph]

Other proposals are welcome!

J. P. Lansberg (SLAC – Stanford U.)
Conclusions and Outlooks II

... but QCD-corrections bring agreements in
- γp for J/ψ
- $e^+ e^-$ for $J/\psi + \eta_c$
- pp for $\Upsilon (J/\psi)$

Time has come for another look? new observables?
- on the one hand, avoiding the presence of Colour Octets
- on the other hand, testing the presence of Colour Octets
- and for which QCD-corrections will not open new (dominant) channels

(first) new observable: $Q + Q\bar{Q}$

What about $Q + \gamma$, R. Li and J. X. Wang, arXiv:0811.0963 [hep-ph]

Other proposals are welcome!

J. P. Lansberg (SLAC – Stanford U.)

Quarkonium production

... but QCD-corrections bring agreements in

- γp for J/ψ
- $e^+ e^-$ for $J/\psi + \eta_c$
- pp for $\Upsilon(J/\psi)$

Time has come for another look? new observables?

- on the one hand, avoiding the presence of Colour Octets
- on the other hand, testing the presence of Colour Octets
- and for which QCD-corrections will not open new (dominant) channels

(first) new observable: $Q + Q\bar{Q}$

What about?

- $Q + \gamma$,
- $J/\psi + \pi$,

... but QCD-corrections bring agreements in

- γp for J/ψ
- $e^+ e^-$ for $J/\psi + \eta_c$
- pp for $\Upsilon (J/\psi)$

Time has come for another look? new observables?

- on the one hand, avoiding the presence of Colour Octets
- on the other hand, testing the presence of Colour Octets
- and for which QCD-corrections will not open new (dominant) channels

(first) new observable: $Q + Q\bar{Q}$

What about?

- $Q + \gamma$
- $J/\psi + \pi$

Other proposals are welcome!