J-PARC Accelerator
- achievement and future upgrade -

Tadashi Koseki

Accelerator Laboratory, KEK
J-PARC Center, KEK&JAEA
Contents

1. Status of accelerator operation and achievement

2. Mid-term upgrade plan

3. Long-term plan

4. Summary
1. Status of accelerator operation and achievements

2. Mid-term upgrade plan

3. Long-term plan

4. Summary
Earthquake

300 kW

Hg-target replacement

The incident at Hadron Facility

532 kW

• as of 3rd of June 2015

〜560 kW

～1 month interruption due to the fire in MLF

593 kW

1 MW

〜10 months interruption due to the earthquake

500 kW

400 kW

Hg-target replacement

500 kW

400 kW

1 MW

Interruption due a trouble of Hg-target

History of beam delivery to the MLF

Interruption due a trouble of Hg-target

Cumulative beam power (MWh)

Average beam power (kW)

Average availability (%)

Cumulative beam power (MWh) 3rd target

Beam power (kW)

Average availability (%)
New front-end system of the J-PARC linac

During the 2014 summer shutdown period, the front-end system of the linac was replaced to increase the peak current to 50 mA.
Demonstration of 1 MW-eq. beam

The anode power supplies of the rf power amplifiers is reinforced in the 2015 summer shutdown periods.
After the reinforcement, we will increase beam intensity for user operation toward 1-MW.
Delivered beam power is 360 kW for the T2K experiment.

Total number is \(> 1.1 \times 10^{21}\) POT as of June 3.
Slow extraction operation in April and June, 2015

After the long shutdown for 1 year and 11 months due to the radioactive material leak incident, beam operation resumed for users in the hadron experimental facility.

April 9, 2015 - June 26, 2015

User operation:
- Beam power: 33kW max.
- Spill duty: 37~40%
- Extraction eff.: 99.5%
High Intensity beam study in June 2015
- at the present betatron tune (22.40, 20.75)-

Trial with
- 2nd Harmonic rf 30 kV
- Intra-bunch FB during Acceleration
- Resonance correction with trim Q and S

Extracted beam : 1.92e14 ppp
(372 kW eq. at the repetition of 2.48 s cycle)

Beam loss distribution
~ 800 W in total

- User operation with ~ 380 kW can be available soon.
- It is confirmed that design beam power of 750 kW can be almost achieved at the future high-repetition of 1.3 s.
High Intensity beam study in June 2015 (cont’d)

- at the new betatron tune area -

Horizontal tune survey at 3 GeV

2\(Q_y = 43\)

Vertical tune survey at 3 GeV

2\(Q_y = 43\)

1. 3\(^{rd}\) Integer resonance correction (3\(Q_x = 64\)) by Trim-Sext.
2. Larger tune spread and crossing integer resonance (\(Q_x = 21\))

Beam survival

99.5%
High Intensity beam study in June 2015 (cont’d)
- at the new betatron tune (22.239, 21.310) -

High power trial of 30 GeV acceleration with two bunches

Extracted beam : 6.82e13 ppp (132 kW eq.)

Total beam loss ~ 420 W

Near future tunable knobs to reduce the beam loss:
Injection kicker, BxB feed-back, 2nd harmonic cavity, VHF cavity, etc.

<table>
<thead>
<tr>
<th>Bunch number</th>
<th>repetition period (sec)</th>
<th>Beam power (kW)</th>
<th>Beam loss (kW)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>132</td>
<td>0.42</td>
<td>measurement</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>530</td>
<td>1.7</td>
<td>estimation</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1000</td>
<td>3.2</td>
<td>estimation</td>
</tr>
</tbody>
</table>

The MR has capability to reach 1MW with the high repetition rate operation.
1. Status of accelerator operation and achievements

2. Mid-term upgrade plan

3. Long-term plan

4. Summary
Mid-term plan of MR

FX: The high repetition rate scheme is adopted to achieve the design beam intensity, 750 kW. Rep. rate will be increased from ~0.4 Hz to ~1 Hz by replacing magnet PS's, RF cavities and some injection and extraction devices. SX: Parts of stainless steel ducts are replaced with titanium ducts to reduce residual radiation dose. The beam power will be gradually increased toward 100 kW watching the residual activity.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Li. current upgrade</td>
<td>New PS buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX power [kW] (study/trial)</td>
<td>320</td>
<td>>360</td>
<td>400</td>
<td>450</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
<tr>
<td>SX power [kW] (study/trial)</td>
<td>-</td>
<td>33-40</td>
<td>50</td>
<td>50-70</td>
<td>50-70</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cycle time of main magnet PS</td>
<td>2.48 s</td>
<td>Large scale 1st PS</td>
<td>Mass production installation/test</td>
<td>1.3 s</td>
<td>1.3 s</td>
<td>1.2 s</td>
<td></td>
</tr>
<tr>
<td>New magnet PS</td>
<td>R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High gradient rf system</td>
<td>Manufacture, installation/test</td>
<td>R&D, manufacture, installation/test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd harmonic rf system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF cavity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring collimators</td>
<td>Add.collimators</td>
<td>Add.collimators (3.5kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection system</td>
<td>Kicker PS improvement, Septa manufacture /test</td>
<td>Kicker PS improvement, LF septum, HF septa manufacture /test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SX collimator / Local shields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti ducts and SX devices with Ti chamber</td>
<td>Beam ducts</td>
<td>ESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New power supplies for 1 Hz operation

Large scale PS for bending magnets and quad. magnets in arc sections

Two large converters and large capacitance for energy recovery, symmetric power module circuit

The R&D history:
(1) Proof of principle by a desk-top PS (2012)
(2) R&D of the small prototype PS (2013)
(3) R&D of the middle prototype PS (2014)

- R&D results of the middle scale prototype PS -

Self-learning control system

Power recovery by C-bank
R&D of new power supplies for 1 Hz operation (cont’d)

Small scale PS for Quad. Magnets in straight section and sextupole magnets

Diode rectifiers, two 1kV choppers are connected in series, symmetric power module circuit

It is possible to build with the combination of existing products.

The model PS system was tested using the real sextupole magnet network.

Mass production can be started in JFY2016 if the budget request is approved by the government.
Plan of PS mass production

<table>
<thead>
<tr>
<th>JFY</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>New buildings for new power supplies</td>
<td></td>
<td>D4,D5,D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large PS (10) (B (6), Q (4))</td>
<td></td>
<td></td>
<td>B (3)</td>
<td>B (3)</td>
</tr>
<tr>
<td>Middle PS (1) (Q(1))</td>
<td>Leading PS for mass-production</td>
<td></td>
<td>Q (2)</td>
<td>Q (2)</td>
</tr>
<tr>
<td>Small PS (9) (Q (6), S (3))</td>
<td></td>
<td>Q (6)</td>
<td>S (3)</td>
<td></td>
</tr>
<tr>
<td>Cooling water system</td>
<td></td>
<td>D4,D5,D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation & tuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High impedance rf system

A new type of the magnetic alloy (MA) core, FT3L (made by Hitachi Metal), is adopted to increase shunt impedance of the rf cavity. The core is processed by annealing with magnetic field.

Comparison of field gradient of rf cavities for hadron rings.

Performance of cavities depends on core materials: ferrite and MA.
J-PARC already achieved very high field gradient.
Configuration of rf cavities

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present FT3M cavities</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New FT3L Cavities</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>New FT3L 2nd cavity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Available voltage</td>
<td>315 kV</td>
<td>355 kV</td>
<td>485 kV</td>
<td>602 kV</td>
<td>602 kV</td>
<td>602 kV</td>
</tr>
<tr>
<td>(2nd Harmonic)</td>
<td>(35 kV)</td>
<td>(70 kV)</td>
<td>(70 kV)</td>
<td>(70 kV)</td>
<td>(70 kV)</td>
<td>80 kV</td>
</tr>
<tr>
<td>Number of cavity cells</td>
<td>27</td>
<td>29</td>
<td>36</td>
<td>43</td>
<td>43</td>
<td>43+8(2nd)</td>
</tr>
</tbody>
</table>

Required voltage: 280 kV(~2017), 540 kV(2018~)
Injection and FX septum systems

New injection septum magnet I and FX low field septum for the high repetition rate operation have been manufactured and now tested.

New injection septum:
- Stable (low vibration)
- Small leakage field $\sim 10^{-4}$
 (the current septum : 4×10^{-3})

Eddy current type is adopted to the new FX low field septum
- Small Power Consumption (possible at low cooling capacity)
- Small Leakage Field $\sim 10^{-4}$
 (the current type septum : 10^{-3})
- Stable (low vibration)
- Thin Septum Thickness ~ 7 mm
 (the current septum : 9.5mm)

They will be installed in the 2015 summer shutdown.
1. Status of accelerator operation and achievements
2. Mid-term upgrade plan
3. Long-term plan
4. Summary
Feasibility of the RCS

Injection beam parameters:
Energy: 400 MeV
Peak current: 50 mA~100 mA
Pulse length: 0.5 ms
Chopper-beam on duty: 0.53

RCS collimator limit ~4 kW
→ RCS has a feasibility to operate 2 MW

- Linac 100 mA/0.5 ms (50 mA/1.0 ms) operation is required.
 R&D of ion source / long pulse operation of linac
- The rf system should be replaced to compensate a heavy beam loading.
- The collimator capability should be upgraded to get a margin for the beam loss.
- Activation downstream of the charge exchange foils should be reduced.

<table>
<thead>
<tr>
<th>RCS intensity</th>
<th>Loss</th>
<th>Loss power at 25 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 MW</td>
<td>~0.3%</td>
<td>400 W</td>
</tr>
<tr>
<td>1.1 MW</td>
<td>~0.3%</td>
<td>440 W</td>
</tr>
<tr>
<td>1.2 MW</td>
<td>~0.3%</td>
<td>480 W</td>
</tr>
<tr>
<td>1.3 MW</td>
<td>~0.3%</td>
<td>520 W</td>
</tr>
<tr>
<td>1.4 MW</td>
<td>~0.3%</td>
<td>560 W</td>
</tr>
<tr>
<td>1.6 MW</td>
<td>~0.5%</td>
<td>1067 W</td>
</tr>
<tr>
<td>1.8 MW</td>
<td>~0.7%</td>
<td>1680 W</td>
</tr>
<tr>
<td>2.0 MW</td>
<td>~1.5%</td>
<td>4000 W</td>
</tr>
</tbody>
</table>
Future proton driver for long-baseline neutrino experiment

The maximum beam intensity is limited by the physical aperture of the MR. The scenarios for achieving multi-MW beam for neutrino experiment are now under discussion.

1. Booster ring for the MR (emittance damping ring)
 The BR with an extraction energy ~ 8 GeV, is constructed between the RCS and the MR

2. Proton linac for neutrino beam production
 (Construction site may not be the Tokai campus)
 - Linac with an beam energy > 9 GeV
 - The MR is operated only for the SX users
The 8-GeV booster ring

Beta & Dispersion for 1-superperiod

\[\beta_{x,y}(m) \]
\[\eta_{x,y}(m) \]

Phase plot @ inj.(3GeV) & extr.(8GeV)

@ 3GeV
\[\epsilon > 125.5\pi \sim 0.04\% \]

@ 8GeV
\[\epsilon > 54\pi \sim 0.06\% \]

8-GeV BR

Injection energy 3 GeV
Extraction energy 8 GeV
Circumference 696.666 m
Superperiodicity 4
Transition gamma ~15 GeV
Collimator Aperture 126\(\pi\).mm.mrad
Physical Aperture 189 \(\pi\).mm.mrad

8 GeV injection in the MR using new septa&kickers

RCS : 1.6 MW
MR > 2.6 MW

RCS : 2 MW
MR > 3.2 MW
Proton Driver in the KEKB Tunnel

As the post-Super KEKB projects in KEK

KEKB tunnel:
- fourfold symmetric configuration.
- Circumference: ~ 3 km
 - Straight section: beam acceleration
 200 m x 4 = 800 m
 - Arc section: beam transportation to
 the next straight section.
 550 m x 4 = 2200 m

Subjects:
- Feasibility of 9 GeV proton linac in
 straight sections of 800 m.
 ⇒ High acceleration field is required.
 ⇒ SC accelerator is essential.
- Beam transport at Arc sections.
SC Cavity for 2nd to 4th Straight Sections

For the acceleration in the 2nd to 4th straight section, the ILC cavity is adopted.

ILC cavity

Yield of usable and maximum gradient of 185 cavities as received

<table>
<thead>
<tr>
<th>Shape</th>
<th>ellipse</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td># of cells per cavity</td>
<td>9</td>
</tr>
<tr>
<td>Quality factor</td>
<td>> 1 x 1010 @ 2K</td>
</tr>
</tbody>
</table>

Average usable gradient: \((26.2 \pm 7.5)\) MV/m

KEK has rich experience and know-how of ILC cavity and cryomodule fabrication.

Average gradient \(E_0\)

Yield of usable gradient of 185 ILC cavities as received (European XFEL)

With the expectation of further R&D, we set the \(E_0\) to 30 MV/m.
Outline of the Proton Driver using ILC Cavity

- Outline of acceleration:
 - 1.2 GeV in 1st straight.
 - 3.3 GeV in 2nd straight.
 - +2.9 GeV in 3rd and 4th straight.
 \[3.3 + 2.9 \times 2 = 9.0 \text{ GeV}\]

- Peak current: 100 mA (pulse)
- Beam duty: 1 %

- Beam power:
 \[9000 \text{ MeV} \times 0.1 \text{ A} \times 1 \% = 9 \text{ MW}\]

- \(\beta_g\) of SC cavities:
 - 2nd straight: \(\beta_g = 0.93\)
 - 3rd and 4th straight: \(\beta_g = 1.0\)

- Normalized RMS emittance
 - Transverse: \(0.30 \ \pi \cdot \text{mm} \cdot \text{mrad}\)
 - Longitudinal: \(0.37 \ \pi \cdot \text{MeV} \cdot \text{deg}\)
Configuration of the cryomodules

The 2nd straight section:
- Doublet lattice with SC quadrupole magnets.
- 4 SC cavities ($\beta_g = 0.93$) are in each cryomodule.
- 27 cryomodules are placed in the section.
 $7.1 \times 27 = 192$ m

The 3rd and 4th straight section:
- Singlet lattice with a SC quadrupole magnet.
- 8 SC cavities ($\beta_g = 1.0$) are in each cryomodule.
- 16 cryomodules are placed in each straight section.
 $12.0 \times 16 = 192$ m

R&Ds are necessary: Higher gradient SC cavities, High power target, Horn…
Summary

Status and operation summary:
- Achieved beam power in user operation:
 500 kW for MLF users
 360 kW and 33 kW for the T2K experiment and HD users, respectively.
- High power demonstration:
 1 MW eq. beam is achieved in the RCS
 132 kw eq. beam with two bunches in the MR (It corresponds 530 kW with 8 bunches)
 It shows the MR has a capability to reach beam power ~ 1 MW with the high rep rate operation.

The MR mid-term plan:
- The design power of 750 kW for the FX, and 100 kW for the SX will be achieved in 2018-2019 after the replacement of main magnet power supplies.
- The MR will reach 1 MW with the new power supplies after 2020.

Long-term plan:
- Simulation shows the RCS has a capability to increase beam power ~ 2 MW.
- To achieve multi-MW beam power for neutrino experiment, the 8-GeV booster, the 9-GeV SC linac are now under discussion.