T2K Sensitivities at 25×10^{21} POT

M. Friend

KEK

August 5, 2015
Motivation and Outline

Motivation:

- As the J-PARC beam power continues to increase, there may be the possibility to collect more T2K POT more quickly, or the possibility to request more beam time for T2K
 - This isn’t an official T2K proposal, but instead part of a discussion about what would happen if the T2K run was extended
 - At higher statistics, reduction of systematic errors becomes even more important

Outline:

- T2K sensitivities with high statistics, analysis improvements
 - δ_{CP} sensitivities at higher POT
 - With different systematic error assumptions and horn currents
 - $\sin^2 \theta_{23}$ and Δm^2_{32} sensitivities at 25×10^{21} POT
 - Sensitivity to MH by high-statistics T2K alone
Nominal Assumptions

The following were used in these studies unless otherwise stated:

- Joint fit of $\nu_e + \nu_\mu + \bar{\nu}_e + \bar{\nu}_\mu$
 - Fit to the Asimov (nominal) data-set – not the average of an ensemble of toy experiments
- True oscillation parameters: $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = -90^\circ$, $\sin^2 \theta_{23} = 0.5$, $\Delta m_{32}^2 = 2.4 \times 10^{-3}$ eV2, normal mass hierarchy
 - \sim T2K, global best fit values
 - All four of these oscillation parameters are fit
- 5% error constraint on $\sin^2 2\theta_{13}$ from external (reactor) experiments (conservative “ultimate expected error”)
- \sim2% systematic errors – see next slide
 - Fully correlated between ν- and $\bar{\nu}$-mode
- ± 250 kA horn current
- Assuming enhanced π^0 rejection using SK fiTQun π^0 cut

Highlighted points are studied here
Systematic Error Implementation

- Systematic errors are implemented as in Prog. Theor. Exp. Phys. (2015) 043C01
 - Errors implemented as a covariance matrix binned in reconstructed neutrino energy
 - Bins for each of ν_e, ν_μ, $\bar{\nu}_e$, $\bar{\nu}_\mu$
 - Fully correlated between ν and $\bar{\nu}$
 - Single nuisance parameter fit for each reconstructed energy bin
 - Matrix generated based on 2012 T2K oscillation analysis errors
 - So, errors on the reconstructed energy spectra shape are considered
- In the paper, assigned a $\sim 7\%$ “conservative” future systematic error on the number of events at SK for both ν_e and ν_μ samples ($\sim 14\%$ for $\bar{\nu}_e$ and $\bar{\nu}_\mu$)
 - $7\% + 14\%$ reduced errors calculated by scaling 2012 error matrix
 - 2% systematic errors shown here:
 - Use the same error sizes for ν and $\bar{\nu}$ ($\sim 2\%$)
 - Scaled 7% errors down by a factor of $2/7$ for 2% errors
 - Obviously, reaching $\sim 2\%$ systematic error level will take a lot of work by T2K analyzers
Statistics at 7.8×10^{21} and 25×10^{21} POT

<table>
<thead>
<tr>
<th></th>
<th>ν_e signal</th>
<th>ν_e bkg.</th>
<th>$\bar{\nu}_e$ signal</th>
<th>$\bar{\nu}_e$ bkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8E21 POT</td>
<td>$\delta = 0$</td>
<td>98.2</td>
<td>26.8</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>$\delta = -90^\circ$</td>
<td>121.4</td>
<td>26.4</td>
<td>19.0</td>
</tr>
<tr>
<td>25E21 POT</td>
<td>$\delta = 0$</td>
<td>314</td>
<td>85.9</td>
<td>82.1</td>
</tr>
<tr>
<td></td>
<td>$\delta = -90^\circ$</td>
<td>389</td>
<td>84.6</td>
<td>60.9</td>
</tr>
</tbody>
</table>

*bkg includes wrong-sign

<table>
<thead>
<tr>
<th></th>
<th>ν_μ-mode</th>
<th>$\bar{\nu}_\mu$-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8E21 POT</td>
<td>w/o oscillation</td>
<td>2,648</td>
</tr>
<tr>
<td></td>
<td>w/ oscillation</td>
<td>741</td>
</tr>
<tr>
<td>25E21 POT</td>
<td>w/o oscillation</td>
<td>8,519</td>
</tr>
<tr>
<td></td>
<td>w/ oscillation</td>
<td>2,375</td>
</tr>
</tbody>
</table>

50% ν^- + 50% $\bar{\nu}$-mode
Effect of Reduction of Systematic Errors

- $\Delta\chi^2$ for resolving non-zero δ_{CP} vs. POT
- Systematic error size matters!
 \rightarrow T2K measurement of δ_{CP} is systematics limited at high statistics
- Sensitivity depends on true value of $\sin^2 \theta_{23}$ (and δ_{CP}, of course)
 - If errors can be reduced to 2%, T2K can make a $>3\sigma$ measurement of non-zero δ_{CP} for any value of $\sin^2 \theta_{23}$ (at $\delta_{CP} = -90^\circ$, NH)

50% ν^- + 50% $\bar{\nu}$-mode
True $\delta_{CP} = -90^\circ$, true MH = NH
Effect of Correlated vs. Uncorrelated Systematic Errors

- Errors are assumed either fully correlated or fully uncorrelated between ν- and $\bar{\nu}$-mode data
- Correlations between systematic errors matter! → Should try to keep systematics as correlated as possible for δ_{CP} measurement

50% ν- + 50% $\bar{\nu}$-mode
True $\delta_{CP} = -90^\circ$, true MH = NH
Importance of Taking $\nu^- + \bar{\nu}^-$-Mode Data

- T2K needs to take a combination of $\nu^- + \bar{\nu}^-$-mode to have highest sensitivity to a non-zero δ_{CP}

100% ν-mode

50% $\nu^- + 50\% \bar{\nu}$-mode
Different Ratios of $\nu^- + \bar{\nu}$-Mode Data

- Best choice of running ratio for maximum sensitivity to a non-zero δ_{CP} depends on the true value of $\sin^2 \theta_{23}$
- But $\sim 50\% \nu^- + 50\% \bar{\nu}$-mode gives best sensitivity for more possible values of $\sin^2 \theta_{23}$ (including $\sin^2 \theta_{23} = 0.5$)

67\% $\nu^- + 33\% \bar{\nu}$-mode

25\% $\nu^- + 75\% \bar{\nu}$-mode
\(\Delta \chi^2 \) for resolving non-zero \(\delta_{CP} \) vs. true \(\delta_{CP} \)

- 50% \(\nu^- \) + 50% \(\bar{\nu} \)-mode
- Unknown MH (true NH)
- Sensitivity is best at \(-90^\circ\) (current best fit point)

- \(25 \times 10^{21} \) POT
- Full T2K Stats. \((7.8 \times 10^{21} \) POT\)
\(\delta_{CP} \) Sensitivity vs. True \(\delta_{CP} \)

- MH is known if an outside experiment measures the MH
- \(\Delta \chi^2 \) for resolving non-zero \(\delta_{CP} \) vs. true \(\delta_{CP} \)
- 50% \(\nu^- + 50\% \bar{\nu}- \)-mode, \(25 \times 10^{21} \) POT, true NH
- Sensitivity is greatly improved at \(+90^\circ\) if MH is known
 - Known MH: \(\Delta \chi^2 \) is greater than 99% CL for 45% of \(\delta_{CP} \) values, and greater than 3\(\sigma \) for 30% of \(\delta_{CP} \) values
 - Unknown MH: \(\Delta \chi^2 \) is greater than 99% CL for 20% of \(\delta_{CP} \) values, and greater than 3\(\sigma \) for 10% of \(\delta_{CP} \) values

Known MH

Unknown MH
Improvement at ±320 kA Horn Current

Enhanced signal, reduced background at ±320 kA
→ Substantial improvement
\(\delta_{CP} \) vs. \(\sin^2 2\theta_{13} \) Sensitivity 90\% C.L.

Contour

\[
3.9 \times 10^{21} \text{ POT } \nu^- + 3.9 \times 10^{21} \text{ POT } \bar{\nu}\text{-mode}
\]

\[
12.5 \times 10^{21} \text{ POT } \nu^- + 12.5 \times 10^{21} \text{ POT } \bar{\nu}\text{-mode}
\]

No outside (reactor) constraint on \(\sin^2 2\theta_{13} \)
\(\delta_{CP} \) Precision

- NH (known), \(\delta_{CP} = -90^\circ \), \(\sin^2 \theta_{23} = 0.5 \)
- \(25 \times 10^{21} \) POT: \(\sigma \sim 36^\circ \) (no sys. err.), \(\sim 45^\circ \) (w/ 2% sys. err.)
- \(7.8 \times 10^{21} \) POT: \(\sigma \sim 63^\circ \)
- Further improvement if constraint on \(\sin^2 2\theta_{13} \) is used
δ_{CP} Sensitivity $\Delta \chi^2$ at 25×10^{21} Total POT
\[\Delta m^2_{32} \text{ vs. } \sin^2 \theta_{23} \text{ Sensitivity 90\% C.L. Contour} \]

\[\sin^2 \theta_{23} = 0.5 \]

\[\sin^2 \theta_{23} = 0.53 \]

- Shown for NH only (true NH)
- Measurement at \(25 \times 10^{21}\) POT: \(\theta_{23} = 45 \pm 1.9^\circ\)
 - Current best measurement is \(46 \pm 3^\circ\) by T2K
T2K Sensitivity to Resolving MH

- $\Delta \chi^2$ for resolving MH (true NH)
- 12.5×10^{21} POT ν^{-} + 12.5×10^{21} POT $\bar{\nu}$-mode
- With 2% systematic errors
- Sensitivity isn’t so great.. will be more significant when combined with NO\(\nu\)A results
Conclusion

- At 25×10^{21} POT, 2% systematic errors, T2K can achieve $>3\sigma$ measurement of non-zero δ_{CP} (at true $\delta_{CP} = -90^\circ$, NH)
 - Reducing systematic errors as much as possible (\rightarrow 2% systematic errors if possible) is beneficial
 - Increasing the horn current increases the sensitivity (or increases the speed at which T2K can reach high sensitivity)
- Possible T2K constraints on other parameters ($\sin^2 \theta_{23}$, MH) are less impressive, but T2K can continue to help provide better constraints on these parameters, and can be a major contributor to global fits
Backup Slides
δ_{CP} vs. $\sin^2 2\theta_{13}$ Sensitivity $\Delta \chi^2$:
25×10^{21} ν-Mode POT

w/out Reactor

w/ Reactor
δ_{CP} vs. $\sin^2 2\theta_{13}$ Sensitivity $\Delta \chi^2$:

50×10^{21} ν-Mode POT

w/out Reactor

w/ Reactor
δ_{CP} vs. $\sin^2 2\theta_{13}$ Sensitivity $\Delta \chi^2$:
$12.5 \times 10^{21} \nu - + 12.5 \times 10^{21} \bar{\nu}$-Mode POT
\(\delta_{CP} \) vs. \(\sin^2 2\theta_{13} \) Sensitivity \(\Delta \chi^2 \):

\[
25 \times 10^{21} \nu^- + 25 \times 10^{21} \bar{\nu} - \text{Mode POT}
\]

w/out Reactor

w/ Reactor
δ_{CP} Sensitivity $\Delta \chi^2$ at 50×10^{21} Total POT

w/out Reactor

w/ Reactor