K_L崩壊実験用角度検出 カロリメータと光検出器

防衛大 応用物理学科 松村 徹

次世代光センサーに関するワークショップ @ KEK (2005.12.26)

 $K_{I} \rightarrow \pi^{0} v \overline{v}$ 崩壊実験

目的: K_L → π⁰vv 崩壊の分岐比を測定し、 標準模型を超える新しい物理の探索
Br (K_L → π⁰vv) ~ (3.0±0.6)×10⁻¹¹ (標準模型)

Br ($K_L \rightarrow \pi^0 v \overline{v}$) < 5.9×10⁻⁷ (現在の上限: KTeV 1999)

KEK E391a 2004年2月 ~ 2005年12月 • 実験手法の確立と上限値の更新 J-PARC - K

• KL崩壊事象の観測 (~100事象)

$K_L \rightarrow \pi^0 v v h$ 崩壊のイベント識別方法

イベント識別

- π⁰の崩壊に伴う2個のガンマ線が検出
- 他の粒子生成信号が非検出

実験セットアップ

電磁カロリメータ と 4π-veto検出器

 $K_{I} \rightarrow \pi^{0} v \bar{v}$ 実験 基本セットアップ

角度検出型カロリメータに対する要請1

- エネルギーの測定、入射位置の測定
- 入射角度の測定(崩壊位置の測定)

主バックグランド $K_L \rightarrow \pi^0 \pi^0$ (Br ~ 9×10⁻⁴) cf. Br ($K_I \rightarrow \pi^0 \nu \overline{\nu}$)~ 3×10⁻¹¹ (標準模型)

• 近接ガンマ線に対する高い分離能力

cf. E391aのCsIモジュール 70x70 mm

個々のファイバーを独立に読み出すことにより、 ガンマ線のエネルギー、入射位置、入射角度を計測できる

今回の発表内容

- シミュレーションによるSPACALの一般的な性能
- J-PARC でのセットアップ
- 光検出器の検討事項

個々のファイバー内でのエネルギー付与

入射エネルギーが変化しても 分布自体はほとんど変化せず、 ファイバーヒット数が変化

入射エネルギーの情報は、 ヒットしたファイバーの本数で デジタル化されている。

ファイバーヒット数 vs 入射エネルギー

ファイバーヒット数 ↓1対1対応 入射エネルギー (デジタルカロリメータ)

6ビット (=64 ch) 以上の 読み出し分解能があれば エネルギー分解能の劣化は無い

例えば、CCD(分解能7~8ビット) などで、個々のファイバーを 一度に読み出すことも可能

入射角度の計算

- シャワープロファイル全体の情報
 × 多重散乱による角度情報のぼやけ

z (mm)

アルゴリズム (概略)

 ヒット位置のクラスター化
 クラスターサイズの小さいものを除去
 検出器表面に最も近いクラスター内に 含まれる、1X₀範囲のファイバーの取得

入射角度分解能

シャワー全体からの算定 --- シャワー粒子統計数が支配的 初段トラックからの算定 --- ファイバー幾何学的配置が支配的

J-PARC実験でのセットアップ(案)

50 mm (\sim 3.2X₀) 500 mm (21.6X₀)

- SPACAL中で10本以上ファイバーが光る確率 ~ 90%
- Cslだけの場合と比べた分解能の劣化

イベントディスプレイ

2個の光子を入射

 $E\gamma_1 = E\gamma_2 = 0.3 \text{ GeV}$ $R_{12} = 65 \text{ mm}$

20 mm 程度まで ほぼ100%分離可能 (トラッキング法による)

コスト

仮に 3m x 3m x 5cm(3.2X₀)の SPACALを製作しようとすると・・・

•ファイバー

4mファイバー 88,000本 → ~ 3500万円 (両端読み出しチャンネル数 176,000 ch)

•溝付き鉛板

成型のための初期投資: ~ 300万円 材料費(純鉛板): ~ 1000万円

+176,000チャンネル分の読み出し装置

高速で安価な読み出し方法の選択が重要

読み出し方法

- Ⅰ.+CCDによる読み出し

 –良い点:容易に多チャンネル読み出し可(6000ch/1台)
 –悪い点:読み出しスピードが遅い(30Hz)
 小型試作機の読み出しに利用 → ビームテスト
- マルチアノードPMTによる読み出し
 –良い点:多チャンネル読み出しの実績あり(K2K他多数)
 –悪い点:コスト高め(~3000円/ch)
- MPPC(SiPM)による読み出し

 –良い点:単価が安い(?)、高圧電源必要なし、
 省スペース化可能、(磁場に影響されない)

 –悪い点:現在開発段階、多チャンネル読み出し実績無し
 ノイズレートが高い

実用化されればかなり魅力的 → サンプルのテスト希望

イメージインテンシファイア + CCD

256ch MAPMT

1x1 mm²

まとめ

J-PARC K_L稀崩壊実験のための角度検出カロリメータとして、スパゲッティ型カロリメータを検討している

- スパゲッティ型カロリメータの特徴と性能
 - 光子のエネルギー、入射位置、入射角度が測定可能
 - 入射エネルギーとファイバーヒット数が一対一対応
 - 角度分解能:2度程度
- J-PARC実験でのセットアップと検討事項
 - Cslの前面に 3.2X₀厚程度のSPACALをXY方向に配置
 - エネルギー分解能の劣化:1GeVで1%未満
 - 2光子分離能力:~20mm
 - 10万本程度のファイバーをどう個々に読み出すか
 - MPPC読み出しを候補とし、サンプルのテスト希望