



# Pulse-to-pulse Beam Modulation for KEKB and PF Injections and Energy Management at KEK 8GeV Linac

<u>K. Furukawa</u>, N. Iida, T. Kamitani, Y. Ogawa, Y. Ohnishi, M. Satoh, T. Suwada, S. Kusano, T. Kudo

### KEK

< kazuro.Furukawa @ kek.jp >

April 2010.

WAO2010



KEKB

# **Electron Accelerator Complex**

Linac clients KEKB Advanced Ring for pulse X-ravs) 8-GeV e- 1nC x2 3.5-GeV e+ 1nC x2 (with 10nC primary e-) ♦ PF 2.5-GeV e= 0.1nC (Photon Factory) PF-AR 3-GeV e- 0.2nC At first simultaneous top-up injections to three rings at KEKB and PF Switching beams at 50Hz For stable operation and higher quality exp. results

INAC



# Operation

- Operation groups at KEKB and linac
  - Overlapped groups
  - Many attend commissioning group from eq. groups
  - Daily KCG meeting
  - Weekly LCG meeting



WAO2010

### **KEKB Operation Improvement**





# **Fast beam switching or Simultaneous Injection**

- Luminosity degradation on beam studies at PF and PF/AR
- Future SuperKEKB injections with shorter lifetime
- Sensitive luminosity tuning with Crab cavities
- PF top-up injection for higher quality experiments
  - CERN/PS switches beams every 1.2s (PPM)
  - SLAC/SLC switched beams at 180 Hz
  - KEK Linac had switched beams 360 times a day in 2008 (just before simultaneous injection)
  - 10~120seconds per switching



# Requirements

- Maximum beam rate of 50Hz x 2bunches should be kept
- Most pulsed power supplies were designed to operate at constant rate (a restriction)
- Most linac magnets were not pulsed (except positron focusing coil)
  - Thus, it took much time for mag-field standardization

### Approx. 1000 devices in linac

\*600 active devices (gun, RF, magnets, etc), 100 passive devices (BPM, WS, etc), and static devices

### 20ms beam switching became the solution



### 3

# **Hardware and Operation Improvements**

- Separate BT for PF (2005)
- Pulsed bending magnet for PF (2007)
- PF beam from common gun (A1) (2007)
- Beam charge safety interlock (2007)
- Event-based fast control system (2008)
- Pulsed steering magnets (2008)
- Electron bypass hole at positron target (2008)
- Interface between ring-linac RF (2008)
- Multi-energy linac optics (2008)
- Simultaneous injections (Apr.2009)

WAO2010



# **Linac Energy Profile**



Simultaneous Injection and Energy Management

Kazuro Furukawa, KEK, Apr.2010. 8





# **Linac Energy Management**





# **Power Management**

- Power management at each power source
  - I of 60 50-MW power sources
  - In order to maximize the power
  - But not to increase the trip rate
    - ズ Interlock at a reflection level VSWR of 1.4
    - **If a trip rate is higher, the voltage is lowered**
    - Surveyed statistically every week

### Some sources will be stand-by state

- As backups, if the energy is enough
  - KEKB e+ has several stand-by, KEKB e- has typically one

## Energy conversion

\* Energy gain = constant x sqrt( power )



# **Cavity and Klystron Database**

### Updated on replacements of klystrons and cavities

### Converted into control database

| sector | unit | No | 新/旧 | typ | d(WG) | α       | М    | Es-Power | c2       | c1       | <i>c0</i>  | Es   | Power | Gain | Gain | Eave | stand | Total |
|--------|------|----|-----|-----|-------|---------|------|----------|----------|----------|------------|------|-------|------|------|------|-------|-------|
|        |      |    |     |     | m     |         |      | データ更新    |          |          |            | kV   | MW    | MeV  | MeV  | MV/m | by    | MeV   |
| A      | 1    | 0  | 旧   | -   | -     | _       | 1.00 | 04.08.30 | -0.04728 | 6.58617  | -138.81662 | 40.0 | 49.0  | 19.0 | 19   | -    | 1     | 19    |
|        |      | 1  | 新   | Α   | 14.33 | 0.94400 | 1.00 | 04.08.30 | -0.04728 | 6.58617  | -138.81662 | 40.0 | 49.0  | 24.0 | 48   | 12.7 |       | 43    |
|        |      | 2  | 新   | Α   | 14.33 | 0.94400 | "    | *        | "        | "        | "          | "    | "     | 24.0 | *    | 12.7 | "     | 67    |
|        | 8    | 1  | Ш   | D   | 13.28 | 0.93868 | 1.85 | 98.10.01 | 0.00000  | 1.93650  | -38.76900  | 41.5 | 41.6  | 43.5 | 171  | 23.0 | 1     | 3004  |
|        |      | 2  | Ш   | D   | 13.35 | 0.93834 |      | -        | 0.00000  | "        | n          |      |       | 43.5 | *    | 23.0 |       | 3047  |
|        |      | 3  | Ш   | D   | 13.28 | 0.93868 |      | *        | 0.00000  |          | "          |      |       | 43.5 | *    | 23.0 |       | 3091  |
|        |      | 4  | IH  | Α   | 13.35 | 0.93834 |      | •        | 0.00000  |          |            |      |       | 40.8 | ^    | 21.6 |       | 3131  |
|        | 1    | 1  | Ш   | Е   | 13.28 | 0.93868 | 1.85 | _        | 0.00000  | 2.07020  | -46.72400  | 43.0 | 42.3  | 44.8 | 179  | 23.7 | 1     | 3176  |
|        |      | 2  | IH  | Е   | 13.35 | 0.93834 |      | -        | 0.00000  | "        | n          |      |       | 44.8 | *    | 23.7 |       | 3221  |
|        |      | 3  | IH  | Е   | 13.28 | 0.93868 |      |          | 0.00000  |          | n          |      |       | 44.8 | *    | 23.7 |       | 3266  |
|        |      | 4  | IH  | Е   | 13.35 | 0.93834 |      | *        | 0.00000  |          | "          |      |       | 44.8 | *    | 23.7 |       | 3310  |
|        | 2    | 1  | Ш   | С   | 13.28 | 0.93868 | 1.85 | 03.09.16 | 0        | 2.47830  | -65.41700  | 41.5 | 37.4  | 40.4 | 162  | 21.4 | 1     | 3351  |
|        |      | 2  | IН  | С   | 13.35 | 0.93834 |      | *        | 0.00000  | "        | "          |      |       | 40.4 | *    | 21.4 |       | 3391  |
|        |      | 3  | IH  | С   | 13.28 | 0.93868 |      | *        | 0.00000  | "        | "          |      |       | 40.4 | π    | 21.4 |       | 3432  |
|        |      | 4  | IH  | С   | 13.35 | 0.93834 |      | *        | 0.00000  | "        | "          |      |       | 40.4 | π    | 21.4 |       | 3472  |
|        | 3    | 1  | Ш   | D   | 13.28 | 0.93868 | 1.85 | 98.11.15 | 0.00000  | 2.32860  | -55.54400  | 42.5 | 43.4  | 44.4 | 178  | 23.5 | 1     | 3516  |
|        |      | 2  | IН  | D   | 13.35 | 0.93834 |      | *        | 0.00000  | "        | "          |      |       | 44.4 | *    | 23.5 |       | 3561  |
|        |      | 3  | IH  | D   | 13.28 | 0.93868 |      | *        | 0.00000  | "        | "          |      |       | 44.4 | *    | 23.5 |       | 3605  |
|        |      | 4  | IH  | D   | 13.35 | 0.93834 |      | *        | 0.00000  |          | "          |      |       | 44.4 | *    | 23.5 |       | 3650  |
|        | 4    | 1  | IН  | С   | 13.28 | 0.93868 | 1.85 | 06.08.30 | -0.12241 | 12.00654 | -248.55271 | 43.5 | 42.1  | 42.8 | 171  | 22.7 | 1     | 3693  |
|        |      | 2  | IH  | С   | 13.35 | 0.93834 |      | *        | 0.00000  |          | u.         |      |       | 42.8 | *    | 22.7 |       | 3735  |
|        |      | 3  | IH  | С   | 13.28 | 0.93868 |      | *        | 0.00000  | "        | "          |      |       | 42.8 | *    | 22.7 |       | 3778  |
|        |      | 4  | IH  | С   | 13.35 | 0.93834 |      | *        | 0.00000  |          | "          | "    |       | 42.8 | *    | 22.7 |       | 3821  |
|        | 5    | 1  | IН  | Е   | 13.28 | 0.93868 | 1.85 | 01.04.22 | 0        | 2.33330  | -53.62000  | 44.0 | 49.0  | 48.2 | 191  | 25.5 | 1     | 3869  |
|        |      | 2  | IH  | Е   | 13.35 | 0.93834 |      | *        | 0.00000  |          |            |      | п     | 48.2 | *    | 25.5 | п     | 3918  |



# **Crest Phase Calibration**

- Each power source with slow phase shifter
  - Energy measurement scanning the phase shifter
    - **Primitive but reliable, while there were several methods**
    - Chicken and egg issue exists on bootstrap
      - If no beam at the end, no measurement possible
  - Every several month at least after the long shutdown
    - Automated measurement takes ~2hours for 60 sources
  - Result is saved as a reference to other software If the voltage was changed, nominal crest change is applied (1kV => ~8degree) (to be measured later)

#### WAO2010

# **Typical Automated Phase Calibration**





# **Energy Profile**

- **♦**8 driver klystrons with fast phase shifters
  - Each manage ~8 high power klystrons
  - Define the overall energy profile
  - With Small phase angle (from the crest)
    - Energy spread compensation depending on beam charge
- 4 klystrons with fast phase shifters
  - Forming two energy-knobs to adjust the energies
    - Before the arc and at the end of the linac
  - Not to enlarge the energy spread
    - **Two klystrons are grouped**

WAO2010



# **Two-bunch Energy Equalization**

- Two bunch in a pulse
  - Energy compensation
    - Depending on beam charge

## Fast timing adjustment

- Automated measurement
- Same procedure
  - As crest phase measurement
  - **With ns timing as a variable**



WAO2010

## **Energy Profile Calculation**





# **Beam Optics Matching**

# Based on energy profile, fudge factors, etc.

Wire scanner measurements
Every several days
Somewhat affected by background noise
Matching by a push button





# **Quad Fudge Factor**

### Twiss parameter measurement with wire scanners

Fudge factor determination, last done in 2008

 Orbit Observation with Single kicks
 Several iterations
 One wiring error was found





# **Fast Controls for Three Energy Profiles**

- **♦**8 driver klystrons with fast phase shifters
  - for overall energy profile and energy spread comp.
- Acceleration/stand-by for 60 klystrons
  - for rough energy adjustment, for back-up
- 4 energy knob klystrons
  - \$ for final energy adjustment
- SLED timing of LLRF at 8 driver klystrons
   for two-bunch in a pulse energy equalization

# Parameter change every 20ms is necessary



# **Simultaneous Injection and Fast Controls**





# **Fast Controls**

~100 parameter switching within 20ms
 \*Keep most of magnet fields with compatible optics
 \*Control IIrf to change energy

Pulsed magnet triggers and delays
Delays to keep the constant rate for certain power-supplies
LLRF phases and delays
Gun voltage and fine delay
Interface to bucket selection, etc

Ethernet-based controls are not reliable enough
 FPGA and fiber-optic RocketIO might be the way ?



# **Event System**

# Many accelerator system require timing signals and accompanying information (event)

Several primitive facilities are combined and used at KEKB and Linac

- Fast Timing signals are provided with delay module TD4/TD4V
- Need timing trigger and rf clock
- (Slow) Events are provided in another facility
  - Combining Hardware and Software
- Event/Timing Systems which distribute the both timing and event are developed at Argonne/SLS/Diamond, and are employed at many institutes (Event Generator/Receiver)
  - Fast Timing, rf clock, Hardware event, Software Interrupt, can be handled in one combined system with a single fiber cable
  - Especially in EPICS, event can be connected EPICS Event directly, so record/database programming is possible



### 3

# **Timing System**



# Old Timing Station



### New Event Receiver Station with 16 outputs





# **Event System**

Simultaneous Injection
 \*to KEKB-HER, KEKB-LER, and PF
 \*2.5GeV to 8GeV, 0.1nC to 10nC
 Stable stored beam current at the

### Stable stored beam current at three rings

- Should improve collision tuning with Crab cavities
- Should improve the quality of experimental data at PF

## Fast switching of many device parameters

- **♦ In 20ms / 50Hz**
- Should be reliable because beam power is much different

### MRF Series 230 Event Generator / Receiver

- VxWorks 5.5.1, MVME5500 (Originally with RTEMS but...)
- Timing precision less than 10ps is sufficient (TD4 provides 3ps)
- Multi-mode fiber, and single-mode fiber for longer distance





KL B5/B6

# **Event System Configuration**



**Event Generator** 

- VME64x and VxWorks v5.5.1
- EPICS R3.14.9 with DevSup v2.4.1
- 17 event receivers up to now

Central

SB B



More than hundred **50Hz-Analog/Timing data** 

Multi/single-mode fiber

Timing precision is < 10ps. < 1ps with external module.</p>

e<sup>-</sup> BT (PF: 2.5GeV, 0.1nC)



Simultaneous Injection and Energy Management



# **Synchronization Scheme**







# **Beam Mode Pattern Generation**







# **Event Manipulation**





# **Beam Mode Pattern Generators**

### Pattern panel arbitrates requests

- From downstream rings with priorities, or human operators
- There are several pattern rules due to pulse device features and limitations

### Pattern arbitrator software was written in scripting languages to meet daily changes during the commissioning stage

Remote controlled automatic pattern arbitrator

| - / - InjPattern-multi        |                 |                 |                             |                |                         |  |  |  |  |  |  |
|-------------------------------|-----------------|-----------------|-----------------------------|----------------|-------------------------|--|--|--|--|--|--|
| File                          |                 | v0.4            |                             |                |                         |  |  |  |  |  |  |
| - Priority                    | 📕 base 50Hz 💷 b | ase 25Hz        | Update: 2009/04/28 10:51:43 |                |                         |  |  |  |  |  |  |
| PF-A1 e-                      | KEKB e-         | KEKB e+         | PF(CT) e-                   | PF-A1 e-       | AR e-                   |  |  |  |  |  |  |
| KEKB e+<br>KEKB e-            | 25 Hz 😑         | 0.000 Hz 😑      | 0.000 Hz 💻                  | 0.5 Hz 😑       | 0.000 Hz 🛁              |  |  |  |  |  |  |
| AR e-                         | Set             | Set             | Set                         | Set            | Set                     |  |  |  |  |  |  |
| KEKB e- Study                 | 12.500 Hz       | 25.000 Hz       | 0.000 Hz                    | 0.500 Hz       | 0.000 Hz                |  |  |  |  |  |  |
| KEKB e+ Study                 | 12.500 Hz       | 25.000 Hz       | 0.000 Hz                    | 0.500 Hz       | 0.000 Hz                |  |  |  |  |  |  |
| PF(CT) e- Study               | KEKB e- Study   | -KEKB e+ Study- | PF(CT) e- Study             | PF-A1 e- Study | AR e- Study<br>0.000 Hz |  |  |  |  |  |  |
| PF-A1 e- Study<br>AR e- Study | 0.000 Hz 🛁      | 0.000 Hz 😐      | 0.000 Hz 🛁                  | 0.000 Hz 😑     |                         |  |  |  |  |  |  |
| -                             | Set             | Set             | Set                         | Set            | Set                     |  |  |  |  |  |  |
| 1                             | 0.000 Hz        | 0.000 Hz        | 0.000 Hz                    | 0.000 Hz       | 0.000 Hz                |  |  |  |  |  |  |
| Un Down                       | 0.000 Hz        | 0.000 Hz        | 0.000 Hz                    | 0.000 Hz       | 0.000 Hz                |  |  |  |  |  |  |
|                               | Read ALL Se     | et ALL "O Hz"   |                             |                | Set ALL                 |  |  |  |  |  |  |
| Ready.                        |                 |                 |                             |                |                         |  |  |  |  |  |  |

Manual pattern generator





## **Parameters**

### Parameters switching via Event system

- LLRF phase/timing : 14x4
- ♦ HP RF timing : ~60
- Gun voltages, picosecond delay : 4
- Pulsed magnets/solenoid : 14
- Injection phase : 2
- Bucket selection : 2
- **♦BPM** : ~100x3
- Basically sufficient for fast beam mode switching
- More parameters comming
- Integrity monitors
- Improved slow beam feedback, fast feedback, etc.



# Linac Event System

Satisfies the requirements
Event rate : 114.24MHz (bit rate : ~2.3GHz)
Fiducial rate : 50Hz
Timing jitter (Short term) : ~8ps
No. of defined events : ~50
No. of receiver stations : 17
No. of Fast parameters : ~130

### CPU stopped 4 times since Sep.2008 for 18 stations







0.0

Vacuum : 2.1E-8

[A•min]

[Pa]

20 CLOSE

7000.0 [A•h]

**BL04** 

BL 08

.12

.16

[**\*** ℓ ]

∫ Idt:

**BL03** 

BL 07

BL15

[hours]



### **Beam Current**

Time:

BL 05

BI 09

**BL13** 

BI 17

Lifetime :

**BL01 CLOSE** 

Beam Current: 449.9 [mA]

0.0

**BL02** 

BL 06

## Beam currents are kept within **\*KEKB 1mA (~0.05%)** PF 0.05mA (~0.01%)



WAO2010

### **KEKB Operation Improvement**





# **Summary**

Energy management of KEKB linac was successfully applied to simultaneous injection

Covers 2.5GeV – 8GeV, 0.1nC – 10nC

Beam optics diagnosis down to ~1%

## Simultaneous injection to HER/LER/PF was successful

Development and installation for various kind of hardware

Another layer of controls based on a fast event system

**Pulse-to-pulse reprogramming of event system** 

### Simultaneous injection will be the base for SuperKEKB as well



### 3

# Thank you



# LLRF

LLRF Timing/analog signals are essential for absolute energy, energy spread, and dual-bunch energy equalization

- Signals are switched pulse-by-pulse
- Value changes are triggered by a preparation event
- Driver klystrons (SB), energy tuner klystron (KL), and sub-harmonic bunchers (SH) are managed by the event system









## BPM

- Tektronix DPO7104 can acquire data at >50Hz.
  With embedded EPICS
- Beam modes are recognized by events through CA network.
- Clients can monitor data of an interested beam mode.
- 26 oscilloscopes are installed.
- 100 BPMs are synchronized. (100 BPMs at BT as well soon)





WA02010



# **Measurement and Data Acquisition**

### Originally much efforts to develop detectors, shaping amplifiers

No budget for all BPMs

### Switched to direct waveform acquisition

Minimized active components, then minimized calibration tasks, maintenance

Equal-length cables

- One oscilloscope covers about 5 BPMs, or combined 20 (or 40) waveforms
- 5 10Gs/s (with additional interpolation)
- Possible to measure dual bunches
- Solved many issues at once!
- Extract each signal, apply calibration factors, send to upper layer at 50Hz





# Embedded IOC on Oscilloscope

## DPO7104, 10Gs/s, 4ch, 8bit

- Windows-XP
- Cygwin software development environment
- Microsoft Visual C++ 2008
  - x http://www-linac.kek.jp/cont/epics/win32/
- **\*EPICS 3.14.8.2**
- Fast data-acquisition at ~150Hz was tricky, but was possible
- Event triggers the data acquisition
- Beam positions and charges are calculated based on ~30 coefficients, and tagged with beam modes
- ♦ 50Hz processing is stable at Linac
- Very efficient for us

# KEKB Injections during Beam Studies at PF and PF/AR

