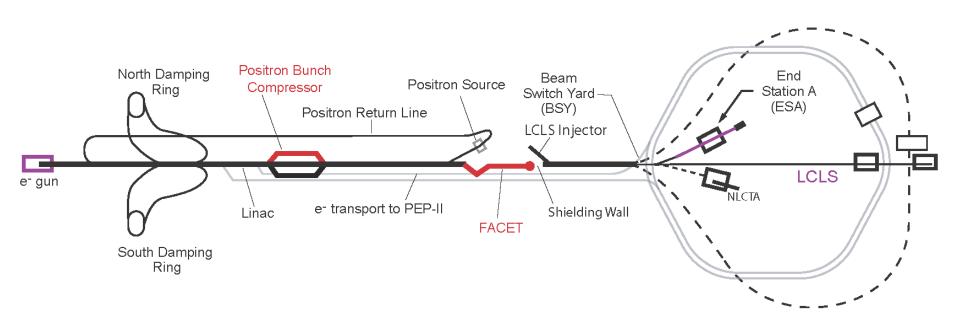
Recommissioning SLAC's LINAC West for FACET

Workshop on Accelerator Operations 2012

Peter Schuh, August 9, 2012

Outline


- Background
- •FACET
- Pre-commissioning preparation
- Challenges during commissioning
- Conclusions

Background

- SLAC's National User Facilities
 - Linac Coherent Light Source (LCLS)
 - Facility for Advanced aCcelerator Experimental Tests (FACET)
 - SPEAR3

Schematic Map FACET and LCLS

Drawing not to scale

Background

- Main Control (MCC) LCLS and FACET
 - 13 Accelerator Systems Operators in 5 teams of 2-3 people
 - 7 Operations Engineers (EOICs)

FACET

- •Uses portion of SLAC Linac that was last used as an injector for PEP-II in 2008
- Operates 4-6 months per year
- Commissioning started in 2011
- Second run with brief commissioning and users in 2012
- Ends in 2016 when LCLS-II begins commissioning

Recommissioning FACET

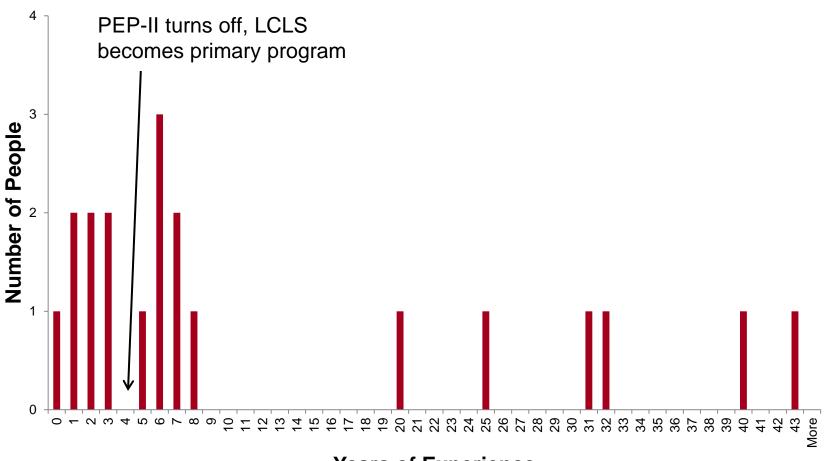
Pre-commissioning preparation

- Experienced operators were divided into six teams of two.
 Each team was assigned a different topic or geographic region
- •Each team gave a 1.5 to 3 hour training presentation on their area/topic that included:
 - An overview of the area
 - The initial beam setup procedure
 - Tuning practices/tips, common problems
- The talks were video taped and made available online

- Control room division of labor and the experience gap
- Control system ease of use
- Standard operating point and procedures not established

SLAC

- Control room division of labor and the experience gap
- Control system ease of use
- Standard operating point and procedures not established


- Control room division of labor and the experience gap
 - Prior to April 2008 PEP-II and LCLS commissioning
 - April 2008 PEP-II turns off, LCLS becomes sole program in Main Control
 - To optimize efficiency operators began sharing workload of LCLS tasks
 - Operators divided tasks for configuration changes and complex tuning procedures into pieces that could be done simultaneously by different operators
 - One operator prepares the injector, another prepares the Linac,
 and a third prepares the photon diagnostics
 - Very efficient

- Introduction of FACET reduced number of operators available to focus on LCLS
- Operator self-sufficiency now much more important
- Single program operation had encouraged specialization
- Gaps in skill sets made apparent by independence

Operator and EOIC Experience Distribution

Years of Experience

- The experience gap
 - FACET initially relied on most experienced operators
 - Efficient for short periods
 - Success relied too heavily on who was on shift

What we did

- During break between FACET runs, practiced having one operator responsible for LCLS
 - All operators rotated through this role
 - Less efficient, but some short term inefficiency necessary to improve skills
 - Conflicts with strong desire to optimize
 - Struggle and even failure, when managed carefully, can improve skills and boost confidence
- EOICs shifted role to focusing on coordination and helping whichever program needed more help
- Continued with this scheme during FACET and LCLS operation

SLAC

- Control room division of labor and the experience gap
- Control system ease of use
- Standard operating point and procedures not established

Recommissioning FACET

- Control system ease of use
 - Most of FACET uses older non-EPICS control system
 - Mature, but not as intuitive as current standard (LCLS)
 - Steep learning curve for new users
 - Basic operating point information has to be actively extracted from the system

- Control system ease of use
 - In the past we tolerated this
 - Only painful for small fraction of people at once (new operators)
 - People "train past" the problem
 - Afterwards, sense of accomplishment (rite of passage)
 - Seeing such a large fraction of the group suffer, realized it is worth fixing

- Control system ease of use, continued
 - Have begun to make more EPICS and Matlab interfaces to the old control system
 - Fortunately most of infrastructure to support this is already in place
 - Data displayed in a more intuitive way
 - This really helps!
 - See Chris Melton's talk for examples
 - Operating point data collected and displayed in real time without requiring operator intervention
 - Fewer actions required to understand state of accelerator

SLAC

- Control room division of labor and the experience gap
- Control system ease of use
- Standard operating point and procedures not established

Recommissioning FACET

Standard operating point difficult to establish

- Evolving lattice and impaired hardware made it hard to get a good sense for "normal" beam parameters and conditions
- Established "standard setup" parameters and practices (ongoing)
 - Shift routines (saving configurations, measuring and recording important parameters)
 - Standard procedures
 - Standard configurations, standard orbits
 - Logging observation of non-standard behavior

Conclusion

21

What we learned

- Processes that work well for one mode of operation may not work well for another
- It's hard to abandon practices that have worked well in the past
- We underestimated the value of an intuitive control system
- Establishing a common frame of reference is a critical part of commissioning

Recommissioning FACET