Marc Delrieux, CERN, BE/OP/PS

CERN'S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

- CERN's Proton Synchrotron (PS) complex
- How are we involved?
- Review of some diagnostics applications
 - examples of 3 possible scenarios for operations

Diagnostics 07/08/2012

Workshop on Accelerator Operations SLAC National Accelerator Laboratory

CERN's Protron Synchrotron complex (1/4)

CERN's PS complex (2/4)

□ Linac 2, 1978-?

- Protons source
- Radio-frequency quadrupole
- 2 buncher cavities (and 1 debuncher)
- 3 Alvarez drift tubes tanks

Bringing protons to a kinetic energy of 50 MeV, with a beam

current up to 180 mA, each 1.2 s

CERN's PS complex (3/4)

□ PS booster, 1972-?

- 4 superimposed synchrotrons of 157 m circumference, injecting a certain quantity of Linac 2's pulses via a multi-turns injection process
- Captures 0, 1 or 2 bunches per ring, hence providing up to 8 bunches to the PS each 1.2 s, with a kinetic energy of 1.4 GeV
- Wide intensity spread: 5E09-4E13 protons per cycle
- A dedicated experimental area (ISOLDE), which consumes almost 40% of produced cycles (and a huge quantity of protons!)
- Space charge effects, tune shift
- Critical for intensity and transverse beam characteristics (hence LHC luminosity)

CERN's PS complex (4/4)

- □ Proton Synchrotron, 1959-?
 - Has accelerated/decelerated
 - Protons/antiprotons
 - lons
 - Electrons/positrons
 - Combined-function magnets
 - Very versatile Radio-Frequency system
 - accelerating cavities (3.3-10 MHz)
 - "gymnastics" cavities (20, 40, 80, 200 MHz).
 - Wide harmonics range (h7 to h420), numerous manipulations
 - bunch splitting, bunch merging, batch compression, batch expansion, bunch rotation...
 - Various extraction energies (up to 26 GeV)
 - All operational beams cross transition (Transition energy 6.1 GeV).
 - Fast, slow, and multi-turn extractions (5 turns continuous transfer...)
 - Critical for longitudinal beams characteristics.
 - Dedicated experimental areas (East Hall, nTOF), and other client machine (Antiproton Decelerator)
- The ions LHC injectors chain also involves Linac3 and LEIR (Low Energy Ion Ring) but these are not operated by PS teams

How are we involved in applications?

- Since 1959, some of our applications have slightly evolved...
- Groups developing applications
 - Controls
 - Beam instrumentation
 - Operation
- Each shift leader is linkman for a certain topic
 - Analogue signals observation
 - Beam intensity measurements
 - Longitudinal profile measurements
 - Beam losses measurements
 - Orbit measurements and corrections
 - Transverse profile measurements
 - Working point
 - Magnetic cycles
 - ...and also: Controls system, power converters and magnets, beam documentation, Frequency domain measurements, Timing and sequencing, safety...
- A linkman's tasks: write specifications, test applications, report issues, follow-up, train fellow operators, ensure the applications fulfill expectations
- A tool for follow-up: from our e-logbook, "report OP issues"

1st (most frequent) scenario: let them do the

job

□ PS orbit (Beam Instrumentation)

- 40 pick-ups, up to 200 000 measurements
- Trajectories (turn-by-turn, bunch-by-bunch), orbits, mean radial position, phase space reconstruction
- OP input permanently necessary
 - Succession of harmonics for gates
- Very good reaction and follow-up

Analog signals

- >1800 signals
- OP functionalities
 - Memory, survey...
 - Multi-triggering and analysis
- Piquet service

1st (most frequent) scenario: let them do the

job

□ Controls system

Knobs and working sets

Analog functions editor

OP requirements

Piquet service

Equipment groups

- PS main power supply
- Specialists application and interface but adapted following OP requirements

1st (most frequent) scenario: let them do the job

Fixed displays

- OP requirements to help fast diagnostics
 - Intensities, magnetic cycles, destinations, particles types...

□ Alarms

- Adapt an already existing program to PS complex
- Integrate commands
- Integrate frontends monitoring \(\sqrt{\sq}}}}}}}}}} \qrightindendend{\sqrt{\sq}}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sq}\sq}\sqrt{\sq}\sq\sint{\sq}\sq}\sqrt{\sqrt{\sqrt{\sqrt{\

2nd scenario: adapt application to your needs

- □ In general CERN-(too)-generic applications
 - LHC is so different from our small pulsed accelerators!
 - Development for LHC is the priority
 - So many different beams = so many different settings
 - Exotic processes and manipulations

□ Wire scanners, tune and chromaticity measurements...

3rd scenario: do it yourself

- □ Specific, dedicated applications
 - RF gymnastics
 - Bunch shape measurements
 - Working point control
 - Combined-functions magnets
 - + additional windings
 - + low-energy quadrupoles
 - Pulsed accelerators
 - Samplers

- Requires heavy maintenance
 - In any case, you have to use controls tools and follow their standards

Conclusions

- □ If you have a dedicated controls/applications group
 - Try to get involved as early as possible
 - Write specifications
 - Find compromises
 - Make sure developers do what YOU want
 - Ask a piquet service for applications YOU consider critical
 - Make sure you have efficient issues reporting tools
- □ If some operators are able to code (and no one gets offended)
 - Either adapt existing applications to your needs
 - Or do 100% of the work...but OP can't provide the same infrastructure as a dedicated group
- Thank you for your attention, and...how do you get what you want?