Complementarity of T2K/HK with Other Longer Baseline Experiments

F.Suekane

RCvS, Tohoku Univ. http://awa.tohoku.ac.jp/~suekane/e

Workshop for Neutrino Programs with Facilities in Japan, 05/Aug./2015 @JPARC

150805

WNPFJ

The purpose of this talk is to motivate to enforce the synergetic activities among the future long baseline (LBL) experiments.

The speaker is not a member of LBL experiments. Therefore, an objective view may be provided as a bystander.

The discussion is conceptual one and the used parameter values are rough. There might be errors or misunderstandings.

Flow of this talk

- * Purpose of this talk
- * Example of a successful synergy
- * $P(v_{\mu} \rightarrow v_{e})$ and A_{CP} with matter effect
- * Possible synergies
- * Conclusion

An example of successful synergy:

The complementarity between Accelerator and Reactor

$$P_{31}(v_{\mu} \rightarrow v_{e}; \Phi_{31} = \pi/2) \sim \frac{\sin^{2} 2\theta_{13}}{2(1 - (L/L_{0}))^{2}} - 0.043 \frac{\sin 2\theta_{13}}{1 - (L/L_{0})} \sin \theta_{13}$$

By the way ... The center value is in the unphysical region now. T2K: Please shrink the error. Nova: What is your result? Double Chooz will check the DB & RENO results soon with the near detector.

Redundancy is important

CP Asymmetry

* Difference between $P(v_{\alpha} \rightarrow v_{\beta})$ and $P(\overline{v}_{\alpha} \rightarrow \overline{v}_{\beta})$

* Experimentally:

$$A_{CP}(@\Phi_{31} = \pi/2) = \frac{P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e})}{P(v_{\mu} \to v_{e}) + P(\bar{v}_{\mu} \to \bar{v}_{e})}$$
Thanks to the all experiments, this coefficients can be calculated now. (synergies!)

* However, the matter effect introduces a fake A_{CP}

Baseline Dependence of the Matter Effect

At the oscillation maximum;

$$\Phi_{31} = \frac{\left|\Delta m_{31}^2\right| L}{4E_v} = \frac{\pi}{2}$$

the weak potential can be expressed by using the baseline L,

$$V_{W} = \frac{2\sqrt{2}E_{v}G_{F}\bar{n}_{e}}{m_{3}^{2} - m_{1}^{2}} = \pm \frac{L}{\pi/\sqrt{2}G_{F}\bar{n}_{e}} = \pm \frac{L}{L_{0}} \frac{L}{v/v}$$

Reference Baseline: L_0

$$=\frac{\pi G_F}{\sqrt{2}}\frac{1}{L}\int_0^L n_e \,dl \sim \pm 5,500 km \\ (\rho=3[g/cm^3])$$

	<i>L</i> [km]	$V_W(=L/L_0)$
T2K/HK	295	±0.055
NOVA	810	±0.15
LBNF	1,300	±0.24

Weak Potential & Oscillation Probability

Main effect of the weak potential on the oscillaion:

$$\sin\Phi_{31} \rightarrow \frac{\sin(1-V_W)\Phi_{31}}{1-V_W}$$

At oscillation maximum
$$\sin(1-V_W)\frac{\pi}{2} \sim 1 - \frac{\pi^2}{8}V_W^2 \sim 1$$

Then, the appearance probability with the matter effect is,

$$P(v_{\mu} \rightarrow v_{e}; @\Phi_{31}) \sim \frac{s_{23}^{2} \sin^{2} 2\theta_{13}}{\left(1 - V_{W}\right)^{2}} \pm \frac{\pi}{2} \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \frac{\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13}}{\left(1 - V_{W}\right)} \sin \delta$$

150805

Oscillation probabilities for various cases

$$\begin{cases} P_{NH} \left(v_{\mu} \rightarrow v_{e}; @\Phi_{31} \right) \sim s_{23}^{2} \frac{0.09}{\left(1 - L/|L_{0}| \right)^{2}} \rightarrow \frac{0.013}{\left(1 - L/|L_{0}| \right)} \sin \delta \\ P_{IH} \left(v_{\mu} \rightarrow v_{e}; @\Phi_{31} \right) \sim s_{23}^{2} \frac{0.09}{\left(1 + L/|L_{0}| \right)^{2}} \rightarrow \frac{0.013}{\left(1 + L/|L_{0}| \right)} \sin \delta \\ P_{NH} \left(\overline{v}_{\mu} \rightarrow \overline{v}_{e}; @\Phi_{31} \right) \sim s_{23}^{2} \frac{0.09}{\left(1 + L/|L_{0}| \right)^{2}} + \frac{0.013}{\left(1 + L/|L_{0}| \right)} \sin \delta \\ P_{IH} \left(\overline{v}_{\mu} \rightarrow \overline{v}_{e}; @\Phi_{31} \right) \sim s_{23}^{2} \frac{0.09}{\left(1 - L/|L_{0}| \right)^{2}} + \frac{0.013}{\left(1 + L/|L_{0}| \right)} \sin \delta \\ P_{IH} \left(\overline{v}_{\mu} \rightarrow \overline{v}_{e}; @\Phi_{31} \right) \sim s_{23}^{2} \frac{0.09}{\left(1 - L/|L_{0}| \right)^{2}} + \frac{0.013}{\left(1 - L/|L_{0}| \right)} \sin \delta \end{cases}$$

150805

Baseline Dependence of v_{ρ} **Appearance Prob.** $P(v_{\mu} \rightarrow v_{e}; @\Phi_{31}) \sim s_{23}^{2} \frac{0.09}{(1 \pm L/|L_{0}|)^{2}} - \frac{0.013}{(1 \pm L/|L_{0}|)} \sin \delta$ T2K/HK MINOS NOVA **LBNF** uncertainty from 0.14 $P(\nu_{\mu} \not\rightarrow \nu_{e})$ $\sin\delta = -1$, $\sin^2 2\theta_{23} > 0.98$ θ_{23} degeneracy 0.12 N.H. 0.1 0.08 $\sin\delta = -1^{0.06}$ sinδ=0 9.04 I.H. $\sin\delta = +1_{0.02}$ 0 0 200 600 800 1000 1200 1400 400 L[km]150805 **WNPFJ** 12

Baseline Dependence of ν_{o} Appearance Prob.

$$P(\nu_{\mu} \rightarrow \nu_{e}; @\Phi_{31}) \sim s_{23}^{2} \frac{0.09}{(1 \pm L/|L_{0}|)^{2}} - \frac{0.013}{(1 \pm L/|L_{0}|)} \sin \delta$$

T2K+NOVA may enforce the hint on M.H. and $\sin \delta$ or may give us tension.

Baseline Dependence of \overline{v}_e Appearance Prob.

CP asymmetry with the matter effect

$$A_{CP} \left(@\Phi_{13} \right) = \frac{P - \overline{P}}{P + \overline{P}} \sim -\pi \left| \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \right| \frac{\sin 2\theta_{12}}{t_{23} \sin 2\theta_{13}} \sin \delta_{CP} \pm 2 \left(\frac{L}{L_0} \right)$$

 $\sim -0.29 \sin \delta_{CP} \pm A_{FK}$ fake CP asymmetry

	<i>L</i> [km]	V_W	$A_{FK} = 2(L/L_0)$
T2K/HK	295	±0.055	±0.11
Nova	810	±0.15	±0.30
LBNF	1,300	±0.24	±0.48

Error of the $\sin\delta$ measurement

$$\delta(\sin \delta_{CP}) = 3.4 \sqrt{\left(\delta A_{CP}\right)^2 + \left(A_{FK}\left(\delta \overline{n}_e / \overline{n}_e\right)\right)^2}$$

150805

A CONTRACTOR OF A CONTRACTOR A C

Baseline Dependence of CP asymmetry

$$A_{CP} \sim -0.29 \sin \delta \pm 2 \left(\frac{L}{L_0} \right)$$

Will evaluate the sensitivity by 3σ error of $\sin \delta_{CP}$ assuming $\delta_{CP}=0$.

May be possible to limit δ_{CP} by 2σ but not 3σ .

If $\sin \delta = 0$ & N.H. and HK measured the expected value.

If M.H. is known, $|\sin \delta| < 0.33(3\sigma)$ can be obtained.

If M.H. is not known, there are two solutions. $\sin\delta=0$ can not be confirmed. \rightarrow M.H. is necessary.

This case, M.H. is determined to be N.H.

* $\delta \sin \delta_{HK} = 0.1 \& \delta \sin \delta_{LB} = 0.1$ $\rightarrow \delta \sin \delta_{HK+LB} = 0.071??$ (common error?)

HK+LBNF case

If $\delta \sin \delta_{CP} \sim 0.1 \rightarrow \delta \sin \delta_{CP} \sim 0.1/\sqrt{2}$ by combining with LBNF

* MSW error independent analysis is possible. $\sin \delta = 3.4 \frac{L_{HK}A_{LB} - L_{LB}A_{HK}}{L_{LB} - L_{HK}}$

Strict test of the standard neutrino scheme and MSW effect.

This indicates a new physics or failure of the standard MSW

Energy dependence of the oscillation

$$\sin(1-V_W)\Phi_{31} = \sin\left(\Phi_{31} - \frac{n_e G_F}{\sqrt{2}}L\right)$$

Constant phase shift $(\Delta \Phi)$ at given L

	<i>L</i> [km]	V_W	$2(L/L_0)$	ΔΦ[rad]
T2K/HK	295	±0.055	± 0.11	±0.086
NOVA	810	±0.15	±0.30	±0.24
LBNF	1300	±0.24	±0.48	±0.38

$$\Delta \Phi_{LB} - \Delta \Phi_{HK} = \frac{G_F}{\sqrt{2}} \left(\overline{n}_e^{LB} L_{LB} - \overline{n}_e^{HK} L_{HK} \right) \sim 0.29?$$

Strong test of MSW with the same osc. mode. Any merit compared with using Φ_{31} from the v_{μ} disappearance?

The last sentence of this report.

The benefit that will accrue from the parallel implementation of these complementary experiments should be quantified at an early stage.

➔ A concrete benifit: Proposals will become stronger

Conclusion

Be Bosons; 1 + 1 + 2 = 4,

Rather Incoherence;

 $11^2 + 11^2 = 2$, No Fermions;

 $|1-1|^2 = 0.$

150805

WNPFJ