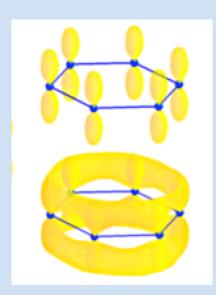
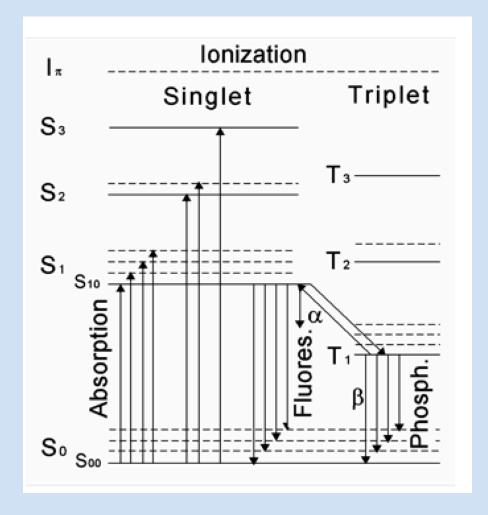
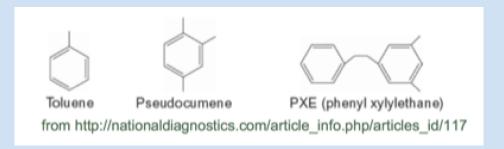
Water-base Liquid Scintillator

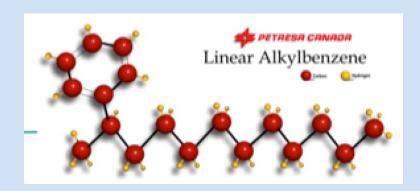

- Description
- Physics Potential
- Status of Development
- Future Plans

Robert Svoboda, J-PARC, August 2015


α overlap C H carbon p orbitals seen from above O1996 Encyclopsedia Britannica, Inc.

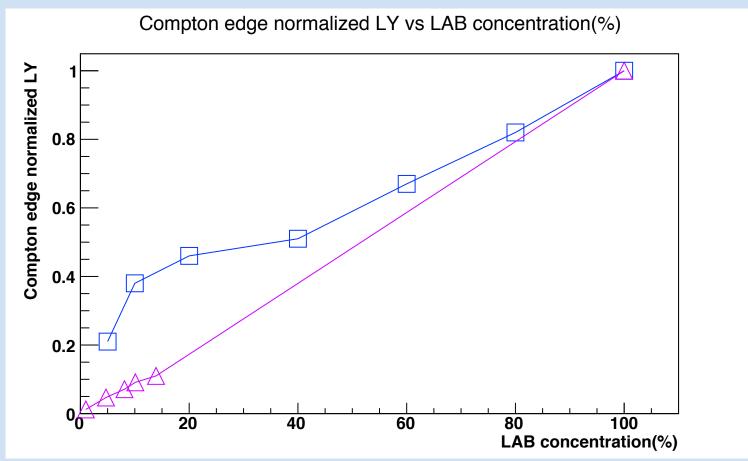
planer σ orbitals of a benzene ring




 $\boldsymbol{\pi}$ orbitals merge above and below ring

How Does it Work?

Singlet and triplet states of the quantum current ring, with vibrational sub-levels. Add a fluor and Stokes Shift and you have a scintillator.


That's why organic scintillators always are made with solvents that have a benzene ring.

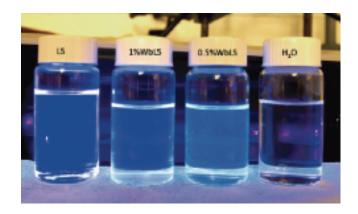
Unlike cryogenic electron drift detectors, there is no fundamental reason that they won't work in water.

Main challenges are then how to dissolve organic liquids in water, and how to keep the solution stable. Sort of like dissolving oil into water...

BNL has solved these basic issues with a proprietary mixture that is tunable for the light output.

Dilution of WbLS in water allows for tuning light yield as desired to match the physics.

WbLS cocktail in water (violet) and cyclohexane (blue) What can you do with this?


Advanced Scintillator Detector Concept (ASDC):

A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

```
J. R. Alonso, N. Barros, M. Bergevin, A. Bernstein, L. Bignell, E. Blucher, F. Calaprice,
        J. M. Conrad, <sup>1</sup> F. B. Descamps, <sup>8</sup> M. V. Diwan, <sup>5</sup> D. A. Dwyer, <sup>8</sup> S. T. Dye, <sup>9</sup> A. Elagin, <sup>6</sup>
         P. Feng, <sup>10</sup> C. Grant, <sup>3</sup> S. Grullon, <sup>2</sup> S. Hans, <sup>5</sup> D. E. Jaffe, <sup>5</sup> S. H. Kettell, <sup>5</sup> J. R. Klein, <sup>2</sup>
         K. Lande, J. G. Learned, K. B. Luk, Maricic, L. P. Marleau, A. Mastbaum, Maricic, Lande, J. G. Learned, Maricic, Lande, Lande, J. G. Learned, Maricia, Lande, J. Maricic, Lande, Lande
    W. F. McDonough, <sup>13</sup> L. Oberauer, <sup>14</sup> G. D. Orebi Gann<sup>a</sup>, <sup>8,12</sup> R. Rosero, <sup>5</sup> S. D. Rountree, <sup>15</sup>
   M. C. Sanchez, <sup>16</sup> M. H. Shaevitz, <sup>17</sup> T. M. Shokair, <sup>18</sup> M. B. Smy, <sup>19</sup> M. Strait, <sup>6</sup> R. Svoboda, <sup>3</sup>
N. Tolich, <sup>20</sup> M. R. Vagins, <sup>19</sup> K. A. van Bibber, <sup>18</sup> B. Viren, <sup>5</sup> R. B. Vogelaar, <sup>15</sup> M. J. Wetstein, <sup>6</sup>
             L. Winslow, <sup>1</sup> B. Wonsak, <sup>21</sup> E. T. Worcester, <sup>5</sup> M. Wurm, <sup>22</sup> M. Yeh, <sup>5</sup> and C. Zhang <sup>5</sup>
                                              <sup>1</sup>Massachusetts Institute of Technology, Cambridge, MA 02139, USA
                     <sup>2</sup> Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
                                             <sup>3</sup>Physics Department, University of California, Davis CA 95616, USA
                                             <sup>4</sup>Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
                                                       <sup>5</sup>Brookhaven National Laboratory, Upton, NY 11973, USA
                                           <sup>6</sup>Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
                                                   <sup>7</sup>Department of Physics, Princeton University, NJ 08544, USA
                                                <sup>8</sup>Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
                           <sup>9</sup>Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
                                                      <sup>10</sup>Sandia National Laboratories, Livermore, CA 94550, USA
                    <sup>11</sup>Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96922 USA
                                       <sup>12</sup>Department of Physics, University of California, Berkeley, CA 94720, USA
                                   <sup>13</sup>Department of Geology, University of Maryland, College Park, MD 20742, USA
                                      <sup>14</sup> TUM, Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany
               <sup>15</sup>Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
                              <sup>16</sup>Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
                                         <sup>17</sup> Department of Physics, Columbia University, New York, NY 10027, USA
                            <sup>18</sup>Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
                           <sup>19</sup>Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
                                                     <sup>20</sup>Center for Experimental Nuclear Physics and Astrophysics,
                                    and Department of Physics, University of Washington, Seattle, WA 98195, USA
                                             <sup>21</sup>Institute for Experimental Physics, University of Hamburg, Germany
                  <sup>22</sup>Institute of Physics & EC PRISMA, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
```

arXiv:1409.5864

Advanced Scintillator
Detector Concept
(ASDC) concept paper
posted on archive.

1% gives ~100 optical photons/MeV

4% WbLS gives approximately four times the light yield of pure water

THEIA:

A realisation of the Advanced Scintillation Detector Concept (ASDC) Concept paper - arXiv:1409.5864

- 50-100 kton WbLS target
- High coverage with ultra-fast, high efficiency photon sensors
- 4800 m.w.e. underground (Homestake).
- Is Kamioka a possibilty?
- Comprehensive low-energy program: solar neutrinos, supernova, DSNB, proton decay, geo-neutrinos, DBD
- In the LBNF beam: long-baseline program complementary to proposed LAr detector

60m 60m Detector image product of RAT-PAC

⇒Broad physics program!

THEIA "Interest Group"

Brookhaven National
Laboratory
University of California,
Berkeley
University of California, Davis
University of California, Irvine
University of Chicago
Columbia University
University of Hawaii at
Manoa
Hawaii Pacific University
Iowa State University
Lawrence Berkeley National
Laboratory

Lawrence Livermore National

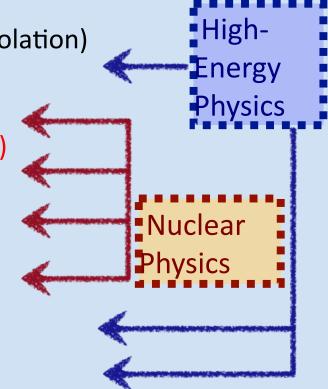
Laboratory RWTH Aachen University TUM, Physik-Department University of Hamburg Johannes Gutenberg-University Mainz

Brunel University

Los Alamos National Laboratory University of Maryland MIT University of Pennsylvania

Princeton University
Sandia National Laboratories
Virginia Polytechnic Inst. &
State University
University of Washington

Potential Physics Program


1. Long-baseline physics (mass hierarchy, CP violation)

2. Neutrinoless double beta decay

3. Solar neutrinos (solar metallicity, luminosity)

- 4. Supernova burst neutrinos & DSNB
- 5. Geo-neutrinos
- 6. Nucleon decay
- 7. Source-based sterile searches

Remarkably, the same detector could show that neutrinos and antineutrinos are the same, and that "neutrinos" oscillate differently

Supernova Burst ν in Theia

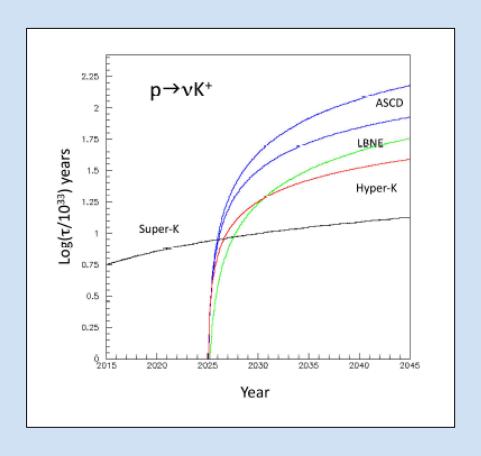
- ~90% events are IBD
- Enhanced neutron tag
 via low threshold
 scintillation. Even better
 if Gd added. Current SK
 efficiency ~18%. With
 Gd will be ~60%-70%.
- Enhanced energy
 resolution of prompt
 IBD. For 4% loading this
 would be a factor of
 two.

Neutrino	Percentage of	Type of
Reaction	Total Events	Interaction
$\overline{\nu}_e + p \to n + e^+$	88%	Inverse Beta
$\nu_e + e^- \rightarrow \nu_e + e^-$	1.5%	Elastic Scattering
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	<1%	Elastic Scattering
$\nu_x + e^- \rightarrow \nu_x + e^-$	1%	Elastic Scattering
$\nu_e + ^{16}O \rightarrow e^- + ^{16}F$	2.5%	Charged Current
$\overline{\nu}_e + ^{16}O \rightarrow e^+ + ^{16}N$	1.5%	Charged Current
$\nu_x + {}^{16}O \to \nu_x + O^*/N^* + \gamma$	5%	Neutral Current

- Better separation of NC mono-energetic 5-10 MeV gammas from background
- Better efficiency for low energy electrons from the 15 MeV threshold CC interactions. Potential for detection of nuclear breakup.

Diffuse Supernova ν in Theia

- Muon induced spallation is a major background. Current SK threshold is 13.3 MeV.
 Scintillation light has the potential to enhance identification of (n,p) events and proton nuclear deexcitation final states.
- A 90% neutron detection efficiency would also reject multiple neutron events (2 of 13 DSNB backgrounds in SK are "double" even with 18% efficiency).


Table 3: Total flux for each SRN model (F_M) , predicted number of SRN events in 22.5 kton-year with a neutrino energy range of 13.3 \sim 31.3 MeV (N_P) , predicted number of SRN events in 22.5 kton-year with a neutrino energy range of 13.3 \sim 31.3 MeV (T_P) after IBD efficiency correction and flux upper limit at 90% C.L. $(F_{90})(\text{cm}^{-2}\text{s}^{-1})$.

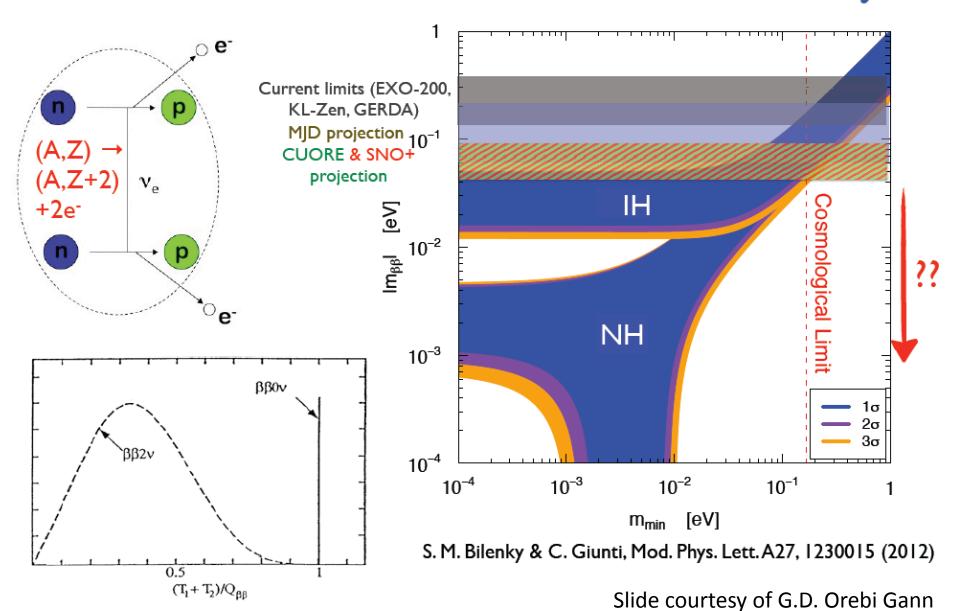
SRN model	F_{M}	N_P	T_P	F_{90}
Constant SN [1]	52.3	10.8	1.4	147.5
HBD 6 MeV [10]	21.8	4.4	0.6	150.9
Chemical evolution [4]	8.5	1.5	0.2	172.6
Heavy metal $[5, 6]$	31.3	4.7	0.6	201.8
LMA [7]	28.8	4.2	0.5	208.8
Failed SN [9]	12.0	1.7	0.2	214.9
Cosmic gas [3]	5.3	0.7	0.1	230.6
Star formation rate [8]	18.7	1.8	0.2	316.3
Population synthesis [2]	42.1	1.3	0.2	986.1

- Low energy "stealth" muon events can be clearly identified. No longer a problem.
- Enhanced energy resolution for signal and background rejection

$p \rightarrow \nu K^+$ Proton Decay in Theia

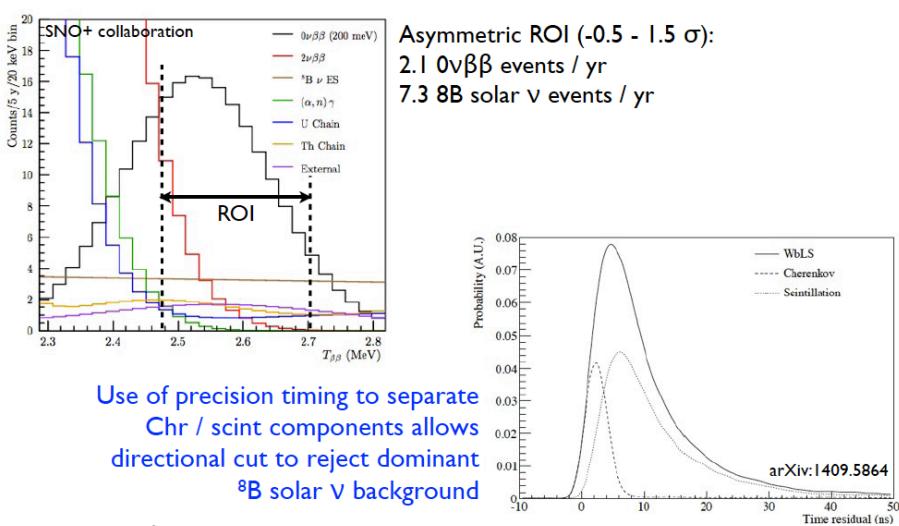
- SK limited due to the fact that the K⁺ is below Cherenkov threshold.
- With WbLS this is no longer the case. Kaons identified via time structure.
- Studies by LENA and ASDC group show that expected efficiency is about 70% in detailed MC studies.
- Background depends on effectiveness of n-tagging
- JUNO should do well here

SK: current + 19% efficiency for future


HK: SKII + 3.5% = 16.5%

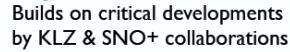
LBNE: 34 kT Bueno et al. efficiencies

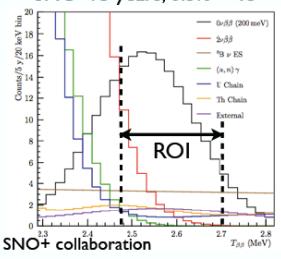
ASDC: LENA efficiencies and pessimistic (0%)


and optimistic (90%) n-tagging

Neutrinoless Double Beta Decay

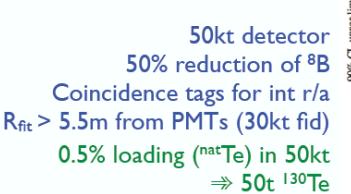
Liquid Scintillator Approach

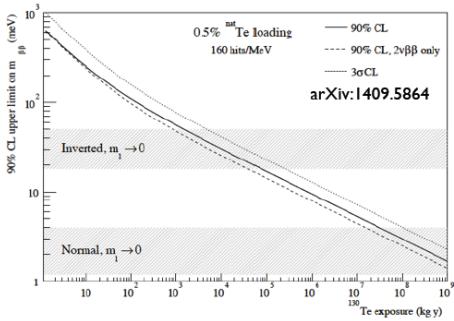

Projected spectrum in SNO+: 5 years, 0.3% natTe



Slide courtesy of G.D. Orebi Gann

THEIA Sensitivity


Projected spectrum in SNO+: 5 years, 0.3% natTe



Ultra-low background, scalable Asymmetric ROI (-0.5-1.5 σ): 2.1 $2\nu\beta\beta$ & 7.3 8 B ν events / yr

Cher / scint separation allows directional cut to reject dominant 8B solar v background

Phys.Rev.Lett.110:062502 (2013); SNO+ white paper under development; Phys. Rev. D 87 no. 7:071301 (2013)

 \Rightarrow 3 σ discovery for $m_{\beta\beta} = 15 meV$ in 10 yrs

Other Physics (see archive paper)

- Long Baseline Neutrinos: Enhanced NC rejection discussion for Homestake site
- Solar neutrinos: possible addition of 7-Li and enhanced efficiency at low energy
- Geo-neutrinos: neutron tagging

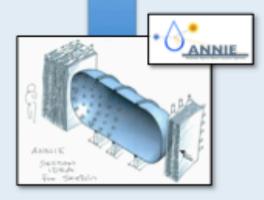
WbLS Development Status

- Light yield studies at BNL and soon at LBNL
- Stability and material compatibility studies at BNL (uncovered one problem so far butyl rubber adhesive).
- Purification studies at UC Davis using NanoFiltration (NF) to separate organic components from water.
- Scaled up production: 10 liters produced in June with BNL 5 liter reactor. Used for NF and Material studies.
- 100 liter batch under production. Will be used for attenuation length studies (currently have on 1-meter arm). Will use UCI and/or LLNL facility.
- 1-ton BNL prototype approved and under construction.

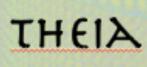
BNL WbLS production

Planned Demonstrations

Site	Scale	Target	Measurements	Timescale
UChicago	bench top	H2O	fast photodetectors	Exists
CHIPS	10 kton	H2O	electronics, readout, mechanical infrastructure	2019
EGADS	200 ton		isotope loading, fast photodetectors	Exists
ANNIE	30 ton	H2O+Gd		2016
WATCHMAN	I kton			2019
UCLA/MIT	I ton	LS	fast photodetectors	2015
Penn	30 L	(\ A/ b) C		Exists
SNO+	780 ton	(Wb)LS	light yield, timing, loading	2016
LBNL	bench top		light yield, timing, cocktail optimization, loading, attenuation,	Early 2015
BNL	I ton	WbLS		Summer 2015
WATCHMAN-II	I kton		reconstruction	2020

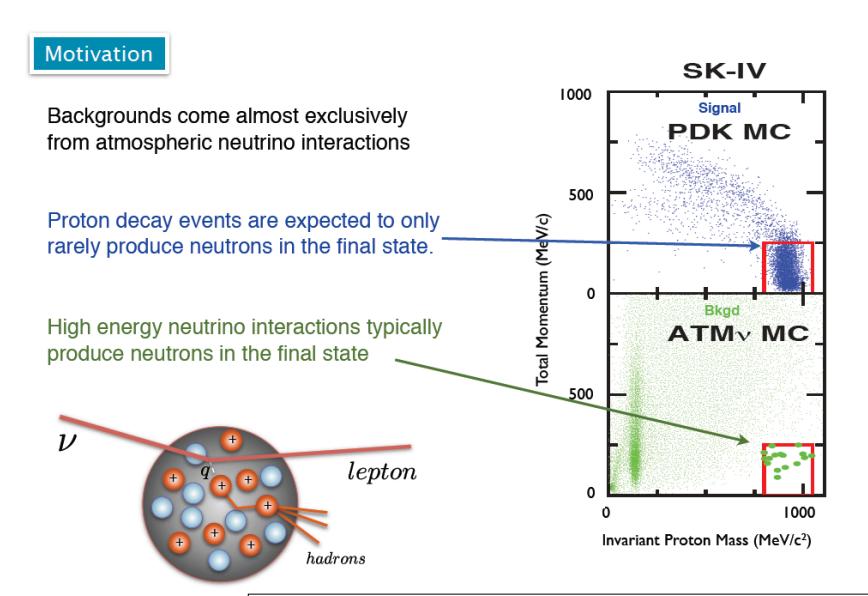

Water-based Liquid Scintillator

Te loading


Gd loading and purification

neutron yield physics LAPPD fast timing

WbLS, Gd, LAPPD, HQE PMT full integration prototype



60m

Bad News/Good News

- Bad News: 1-kton WATCHMAN proposal rejected by DOE ("too expensive for R&D").
- We were encouraged to submit smaller scale R&D proposals. LOI to DOE/HEP last week, proposal due September. Also, discussion with DOE/DNN last week for FY16 went well.
- Good News: ANNIE received Stage One approval from Fermilab and is going ahead with a background run starting THIS YEAR!

I. Anghel^{1,4}, G. Davies⁴, F. Di Lodovico¹¹, A. Elagin⁹, H. Frisch⁹, R. Hill⁹, G. Jocher⁵, T. Katori¹¹, J. Learned¹¹, R. Northrop⁹, C. Pilcher⁹, E. Ramberg³, M.C. Sanchez^{1,4}, M. Smy⁷, H. Sobel⁷, R. Svoboda⁶, S. Usman⁵, M. Vagins⁷, G. Varner¹⁰, R. Wagner¹, M. Wetstein⁹, L. Winslow⁸, and M. Yeh²

Argonne National Laboratory ²Brookhaven National Laboratory ³Fermi National Accelerator Laboratory ⁴Iowa State University
 National Geospatial-Intelligence Agency ⁶University of California at Davis ⁷University of California at Irvine
 University of California at Los Angeles ⁹University of Chicago ¹⁰University of Hawaii ¹¹Queen Mary University of London

Rates Expected with 1x10²⁰ POT exposure at SciBooNE pit Djurcic **Total Events** ν-type Total Charged Neutral Current [1/1ton/10²⁰POT] (per v-type) Current Booster Beam 2945 10419 10210 7265 $\nu_{\rm m}$ anti-v_u (v-mode, 88 45 133 Target = CH_2) 72 20 52 $\nu_{\rm e}$ 4.4 3 anti-v_e 1.4 Booster Beam 10612 10405 7443 2962 ν_{μ} anti- ν_{μ} 85 (ν-mode, 129 44 Target = H_2O) 73 53 20 $\nu_{\rm e}$ 3.0 1.6 anti-v 4.6 3m x 3m x 3m tank of Gd enhanced water instrumented with photosensors. Existing veto on muons produced upstream of the detector (FACC) Beam Water **Target Existing Muon Range** "ANNIE Hall" Detector (MRD)

(formerly the SciBooNE pit)

Nigel S. Lockyer Director's Office 630,840,3211 - office 630,338-6684 - cell Lockyer@ihal.gov

February 5, 2015

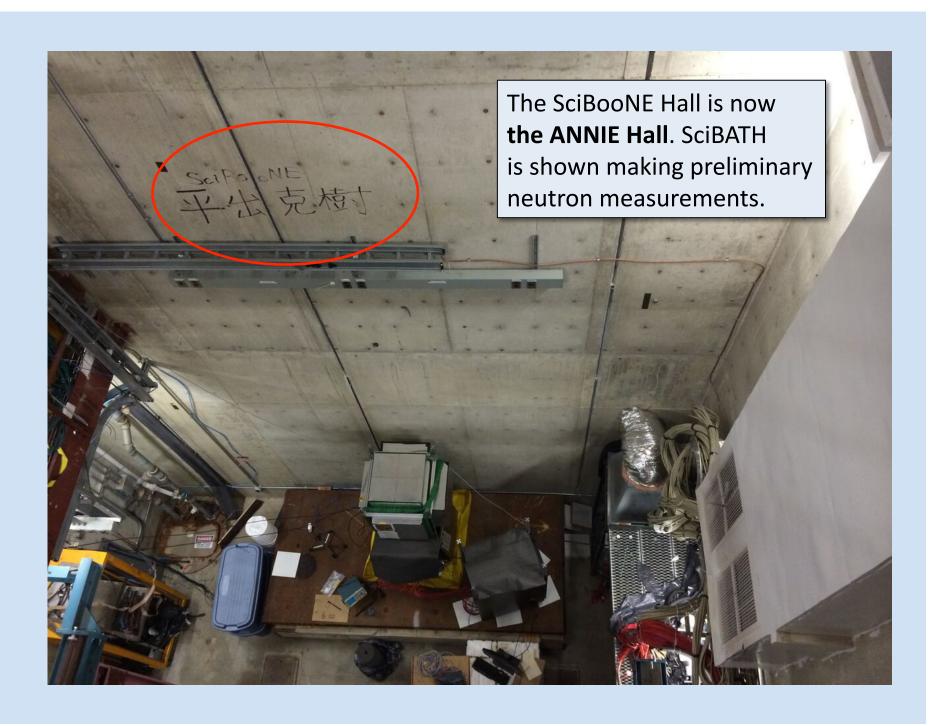
Matthew Wetstein HEP Division Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439

Dear Matt.

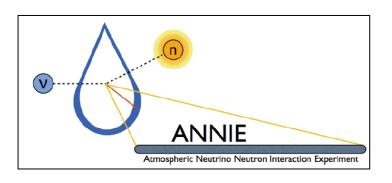
Thank you very much for your presentation of the LOI update "P-1063: ANNIE" at the January meeting of the Fermilab Physics Advisory Committee (PAC). The committee explicitly mentioned its appreciation of the carefully prepared presentations for this meeting.

The future neutrino program hosted by Fermilab was a major topic at the meeting. Excerpts from the PAC report on ANNIE are attached. As you can see, the committee was "impressed by the progress being made by the ANNIE collaboration" and recommended "that the ANNIE collaboration be granted Stage 1 approval and be supported to proceed with Phase I of their proposed work." The committee would also like an update on LAPPD progress at their next meeting, and in addition would like to know how the collaboration would achieve the proposed physics goals in a timely fashion if the development of the LAPPD detectors suffers significant delays.

I accept the PAC recommendation, and grant P-1063 Stage 1 approval for the first phase of the ANNIE work. I look forward to hearing of progress on ANNIE in the future.


Sincerely,

Nigel S, Lockyer Director of Fermilab See ANNIE presentation at January 2015 FNAL PAC meeting for details.


First Phase will be neutron background measurement with SciBATH followed by 20 ton water tank with LS (perhaps WbLS) moveable target.

Second Phase will be neutron yield experiment using Booster Neutrino Beam (BNB) and LAPPD fast light sensors

May include internal WbLS target – under discussion

2015-2016 Run

- Seeking more collaborators, especially those interested in proton decay, DSNB physics and WbLS/LAPPD R&D.
- **Seeking readout electronics** for Muon Range Detector for Phase 0 (400 channels) and CDF paddle vetos (50 channels) and a group to make it work. **SK electronics?**
- Would also like more PMT's if possible to enhance capture gamma detection.

FroST

Frontiers in Scintillator Technology

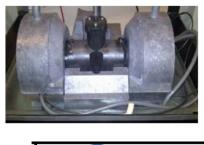
Local Organising Committee

Gabriel Orebi Gann Bob Svoboda

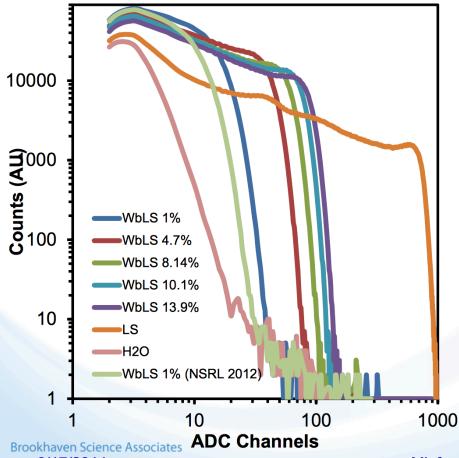
Scientific Advisory Committee

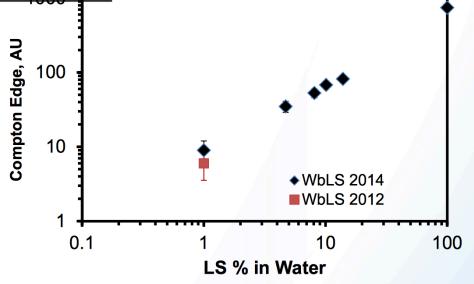
Steve Biller Frank Calaprice Mark Chen Cristiano Galbiatti Wick Haxton Kunio Inoue Thierry Lasserre

Manfred Lindner Serguey Petcov Gioacchino Ranucci Mayly Sanchez Yifang Wang Michael Wurm


Thanks!

Future?


Nanofiltration Lab


1% WbLS-2014 cont'd

6/17/2014

- WbLS light-yield as a function of LS% loading
 - Higher light-yield at the cost of optical transmission
- Linear correlation between light-yield and LS% (up to ~15%)
 - Different behavior with that of pure scintillator
- WbLS-2014 has ~25% more light-yield than WbLS-2012

BROOKHAVEN NATIONAL LABORATORY