Super-K Gd

M.Ikeda(ICRR)

for Super-K collaboration

20150804@JPARC

Workshop for Neutrino Programs with facilities in Japan

Contents

- Introduction to SK-Gd
- Physics motivations
- Study of Gd effect to SK
- Plan
- Summary

Super-Kamiokande

Super-Kamiokande

Super K-Gd Beacom and Vagins PRL93,171101 (2004)

- Large cross section for thermal neutron (48.89kb)
- Neutron captured Gd emits 3-4 γ ray in total 8 MeV
- We can tag $\bar{\nu}_{e}$ by using the delayed coincidence technique.

Physics targets:

- (1) Supernova relic neutrino (SRN)
- (2) Improve pointing accuracy for galactic supernova
- (3) Precursor of nearby supernova by Si-burning neutrinos
- (4) Reduce proton decay background
- (5) Neutrino/anti-neutrino discrimination (Long-baseline and atm nu's)
- (6) Reactor neutrinos

Why Gd (not 2.2MeV γ) for neutron tagging Number of hit PMT (Nhit) distributions

Efficiency and fake probability

2.2MeV γ : Efficiency: 10~20%, fake probability: ~10⁻² Gd(n, γ)Gd: Efficiency: >80%, fake probability: <10⁻⁴

History of SK-Gd project

2002 Nov. collaboration meeting

Started to discuss GADZOOKS! 2006 May. Gd Advisory Committee was formed. list up R&D items and specifications

2007 Nov. collaboration council

It was suggested to make a test tank and study feasibility.

2009 EGADS was started.

A 200 ton test tank was constructed.

2013 0.2% $Gd_2(SO_4)_3$ was dissolved to EGADS before mounting PMTs and transparency was measured.

2013 summer 240 PMTs installed to EGADS

- 2014 Oct. 2015 May Dissolved 0.2% $Gd_2(SO_4)_3$ again and measuring water transparency and scattering ratio.
- 2015 Jun. collaboration council

GADZOOKS! was approved. \rightarrow SK-Gd

VOLUME 93, NUMBER 17 PHYSICAL REVIEW LETTERS

week ending 22 OCTOBER 2004

Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, California 92697, USA (Received 25 September 2003; published 20 October 2004)

We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\nu} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^- + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.

DOI: 10.1103/PhysRevLett.93.171101

PACS numbers: 95.55.Vj, 29.40.Ka

Official statement from Super-K collaboration

On June 27, 2015, the Super-Kamiokande collaboration approved the SuperK-Gd project which will enhance anti-neutrino detectability by dissolving gadolinium to the Super-K water.

The actual schedule of the project including refurbishment of the tank and Gd-loading time will be determined soon taking into account the T2K schedule.

Physics motivation

Theoretical flux prediction : 0.3~1.5 /cm2/s (17.3MeV threshold)

Search for SRN at Super-K

Search window for SRN at SK : From ~10MeV to ~30MeV

Now SRN search is limited by BG.

We need BG reduction by the neutron tagging!

SRN: Expected signal and background in SK-Gd 10yr

Expect number of events in 10 years in E_{total} =10-30 MeV

Assuming

Capture efficiency of 90% and Gd gamma detection efficiency of 74%.

Invisible muon B.G. is 35% of the SK-IV invisible muon BG.

Min/nominal/Max are due to uncertainties in astronomy.

Background: ~18 ev.

12

SRN flux from Horiuchi et al. PRD, 79, 083013 (2009)

SRN: Expected signal and background in SK-Gd 10yr

Improvement for Proton decay

Neutron multiplicity for

If one proton decay event is observed at Super-K after 10 years Current background level: 0.58 events/10 years Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44%(w/o n) to 9%(w/ n).

by Haga

Improvement for T2K

By Pablo

Number of tagged neutrons in T2K energy range

Using n-tagging information, \bar{v}_e ID (v_e missID) eff. ~70%(30%)

 \bar{v}_{e} enhanced sample in anti mode appearance analysis

Anti mode 3.9×10^{21} Appearance Contour

True parameters: $sin^2 2\theta_{13} = 0.1, \delta cp = -90^{\circ}$ $\Delta m^2_{32} = 0.0024 eV^2$ (Fixed), $sin^2 \theta_{23} = 0.5$ (Fixed), NH(Fixed)

Study Gd effect to SK

Study items to achieve SK-Gd

- ✓Gd water transparency must be similar to SK water
 ✓Effect of Gd to detector materials
- Effect of Gd water quality to physics analysis
- How to stop leak of SK detector
 - (But still exploring improved methods)
- □ Reduction of radioactive backgrounds in Gd powder

(only affects Lowe analysis)

☑ : done, □ : under study

EVALUATING Gadolinium's Action on Detector Systems 200 m³ tank with 240 PMTs

Transparency measurement (UDEAL)

15m³ tank to dissolve Gd

Gd water circulation system (purify water with Gd)

EGADS detector: Baby-Kamiokande

One of main goals for EGADS is to study the Gd water quality with actual detector materials. Thus, the detector fully mimic Super-K detector. : SUS frame, PMT and PMT case, black sheets, etc.

Gd dissolving test has been performed since Oct.2014. and finished Apr. 2015

Transparency of Gd water with PMTs

The light left at 15 m in the 200m³ tank was ~75% for 0.2% $Gd_2(SO_4)_3$, which corresponds to ~92% of SK-IV pure water average.

Rayleigh Scattering measurement

Comparison of data between 0.1% and 0.2% $Gd_2(SO_4)_3$ water $(\beta_{0.2\%}/\beta_{0.1\%})$ for wavelength: 337nm, 375nm, 405nm

Measurement of scattering amplitude and its reproducibility

Angular dependence of Rayleigh scattering:

 $\propto (1-\sin^2 heta\cos^2arphi)$

We confirmed that at every configuration, the reproducibility is $\sim 10\%$ due to uncontrolled systematics (beam halo and its reflection etc.)

Comparison between 0.1% and 0.2% Gd water

Assume BG which affects to the amplitude is negligible, then $\beta_{0.2\%}/\beta_{0.1\%}$ ~Amplitude(0.2%)/Amplitude(0.1%)

No significant increase of scattering was observed.

(for simulation, $\Delta\beta:\Delta\gamma = 1:9$ case was taken)

Effect on High energy (atm.v, T2K)

	Pure water	Gd water
Momentum resolution		
electron (500MeV)	4.9%	4.9%
muon(500MeV)	2.5%	2.5%
Miss-PID(%)		
muon(500MeV)→e-like	0.59 ± 0.12	1.00 ± 0.15
π ⁰ (500MeV)→ T2K1Re	4.7±0.3	6.1 ± 0.4
Number of T2K events (nu-mode 3.9*10 ²¹ POT)		
Appearance signal	98.5	97.7
Appearance BG	24.6	25.2
Disappearance signal	622.2	623.8
Disappearance BG	45.6	48.6

1000

 15.8 ± 0.7

fiTQun L π^0 /Le

1000

 75.7 ± 1.8

 77.7 ± 1.8

28

 16.7 ± 0.7

Effect on Low energy (solar v, SRN)

Baseline method to stop SK tank leak

line (5kaf/cm2)

図-6

加圧容器

Cover welded places with sealing materials.

Cover with two layers. Lower layer is BIO-SEAL 197 which sneak into small gaps, and upper layer is a material which allows more displacement.

Timeline of SK-Gd

Numbers in parentheses are months to be taken for the work

In order to set T_0 , T_1 , $\&T_2$, T2K schedule will be also taken into account

Summary

- SK-Gd project (was known as GADZOOKS!) started in 2002
- EGADS started in 2009 to evaluate Gd effect to SK.
- In 2015, we achieved resolving 0.2% (target value) of Gd sulfate after PMT installation without a large loss of water quality.
- Most of listed items to study Gd effect were studied, and confirmed that there is no showstopper.
- Finally, SK-Gd was accepted by Super-K in June 2015.
- Let's enjoy neutron tagging physics with SK-Gd!