

J-PARC T60 Emulsion based test experiment in Neutrino beamline @J-PARC

Tsutomu Fukuda (Toho Univ.) on behalf of the T60 group

Workshop for Neutrino Programs with facilities in Japan, 5th Aug. 2015 @J-PARC

Nuclear emulsion

Motivation

- We are planning new experiments at J-PARC to study low energy neutrino interactions by introducing nuclear emulsion technique.
- The emulsion technique can provide good measurements with ultimate position resolution.
- Physics motivation is a detailed (exclusive) study of low energy neutrino – nucleus interactions for a variety of target (H₂O,Fe,C) and

cross section measurement of low energy \mathcal{V}_{e} interaction and the exploration of a sterile neutrino.

Advantage of Emulsion

J-PARC T60 experiment

Proposal of an emulsion-based test experiment at J-PARC

Exclusive summary

A test experiment is proposed that equips Emulsion Cloud Chamber as a main detector in order to investigate environmental and beam associated background at the T2K near detector hall in J-PARC, optimal detector structure, and performance of newly developed nuclear emulsion gel. The aim of the experiment is a feasibility study to make a future experimental plan for the study of low energy neutrino-nucleus interactions and the exploration of a sterile neutrino.

A collaborative project with some member of OPERA and T2K.

- The aim of T60 is a feasibility study to make a future plan.
- We will expand the scale of detector gradually, step by step.

Preparation of emulsion films

Nuclear emulsion films were made by ourselves in this time.

Emulsion coating: Both sides of plastic base

8

@Nagoya Univ.

Performance of emulsion

Initial performance for each production batch

Signal efficiency \rightarrow Grain density Isolated random noise \rightarrow Fog density

For signal efficiency and noise density, initial and long-term performance of new emulsion gel is kept at safety level.

Data taking by emulsion scanning system

Position distribution

10.5 cm

Track quality selection

Latest very high speed scanning system developed in Nagoya univ.

Reconstructed track data

Pilot analysis: Multi-track vertex search

Expected ν int. ~ 10 events for this selection

Proton identification

Emulsion Shifter

Emulsion Shifter was placed at between ECC and INGRID.

Doublet emulsion films are set on moving stages controlled by stepping motor. Top stage → 36 hours / step Middle stage → 20 min. / step Bottom stage → 1.25 sec. / step

Time stamp is given by coincidence of tracks on each stage.

 \rightarrow Position difference from reference point

= Timing information

Status of shifter

Mechanical reproducibility of moving stage

Emulsion Shifter is working very well.

Shifter analysis of top stage is done. Tracks in ECC is given 36 hours pitch timing information.

Time stamp for neutrino events 2 neutrino events are given their time stamp in the pilot analysis ! Other events will also be given their time stamp and if we analyzed middle and bottom stage, time resolution will be reached second level.

<u>Water target emulsion chamber</u> install and Run

We installed a water target emulsion chamber during $\overline{\nu}$ exposure in May.

Neutrino exposure was done. First results will be reported \rightarrow End of Sep.

Emulsion films (vacuum packed)

Target mass : H₂O 1.5kg (2.0 mm pitch)

<u>Setup</u>

Large angle scanning

In current high speed scanning system (HTS), angle acceptance is limited by $|\tan \theta| \le 2.0$. Angle acceptance will be widen by $|\tan \theta| \le 4.0$ for detected neutrino events by using Large angle scanning system.

XY Stage

Possibility of hybrid analysis with INGRID

- T60 emulsion detector don't have a capability of muon identification.
- Near future, timing information of tracks in emulsion det. will be reached second level by shifter analysis.
- If track by track timing matching between T60 and INGRID could be done, muon id for neutrino event in T60 det. will become available.

Is it possible ? This is one of discussion points from T60

Next run: *Detector run 1*

We plan a neutrino exposure after summer shut down. Aim is Data – MC comparison at high statistics of more than 1k events with large scale Iron-ECC (20x target mass).

Consideration of future hadron study with emulsion detector

We have an experience of the study of 2,4,10 GeV/c pion – lead int. with emulsion detector.

→ useful information for reduction of uncertainly of neutrino flux ?

Consideration of future hadron study with emulsion detector

<section-header>

Kinematical data is also given.

Emulsion Spectrometer (emulsion in magnetized field)

Test beam : 15mm gap, B = 1T

Electron charge could be measured !

Schedule

- Emulsion scanning optimized based on the pilot analysis will be started and the emulsion analysis will be improved.
- The results will be reported on the end of September.
- Larger size iron target emulsion chamber (~20x. target mass) is planned to install after summer shut down.
- About several thousands of muon neutrino events and several dozen of electron neutrino event will be detected.
- Test experiment can run parasitically with T2K. (we request no dedicated beam time nor beam condition)
- We will expand the scale of detector gradually, step by step. Then we start to consider a future experiment for hadron carbon interaction study with emulsion chamber.

- We proposed an experiment series to investigate low energy neutrino interactions for the understanding of ν int. itself and sterile neutrino search with Nuclear Emulsion at J-PARC.
- First of all, we performed to expose neutrino to the iron-target and water-target ECC for the feasibility study.
- We confirmed to proceed an emulsion based experiment in safety. Then some of neutrino interaction events were detected and physics analysis was also demonstrated.
- We proposed next step of the test experiment to increase statistics of neutrino events and hope to verify the neutrino interaction model and detect electron neutrino events.

Particle ID

Neutrino interaction in emulsion (microscope view)

3 M.I.P tracks (forward)
1 Grey track (forward)
3 Nuclear fragment tracks (forward)
2 Nuclear fragment tracks (backward)

100 µ m

Track reconstruction

