

Neutrino Physics with Reactors

Jun Cao

Institute of High Energy Physics

Workshop for Neutrino Programs with facilities in Japan, J-Parc, Aug. 5, 2015

Reactor Neutrinos

- Discovery of neutrino in 1956
- Small θ_{13} in 1990s
- limit on neutrino magnetic moment
- Observation of reactor $\overline{\nu_e}$ disappearance in 2003
- Discovery of non-zero θ_{13} in 2012
- Mass hierarchy and precision measurements
- Sterile neutrinos, Magnetic moment, ...

<u>Outline</u>

- Measuring θ_{13} and Δm^2_{ee}
 - 🗢 Daya Bay
 - ➡ Double Chooz
 - ⇒ RENO
- Determining Mass Hierarchy & precision measurement of θ_{12} , Δm_{21}^2 and Δm_{31}^2
 - ⇒ JUNO
 - ⇒ RENO-50
- Search for sterile neutrinos
- Measuring reactor neutrino flux and spectrum
- Search for abnormal magnetic moment
- Summary

Detecting Reactor Antineutrino

Measuring θ₁₃ and Δm²_{ee} ⇒ Daya Bay ⇒ Double Chooz ⇒ RENO

The Daya Bay Experiment

- 6 reactor cores, 17.4 GW_{th}
- Relative measurement

 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic shielding
 - 250 m.w.e @ near sites
 - 860 m.w.e @ far site
- Redundancy

Double Chooz

Ve

Chooz Reactors 4.27GW_{th} x 2 cores

edf

Near Detector L = 400m 10m³ target 120m.w.e. 2013 ~

Far Detector L = 1050m 10m³ target 300m.w.e. April 2011 ~

7

Double Chooz Near Site

the second detector was inaugurated on September 25, 2014

Fill this summer > Neutrinos in september/October Buffer closed main tank to be closed this week

Double Chooz

- 2011.4-2013.1 (460 days). No near site data until 2014.9
- Used spectrum analysis for both nGd & nH events
- Used Reactor-off data to directly measure backgrounds
- ♦ New analysis → less background and uncertainties, better flux prediction(²³⁸U), better energy reconstruction, ...

R+S: $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$, BG rate: $1.38 \pm 0.14 \text{ day}^{-1}$ RRM: $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$, BG rate: $1.56 \pm 0.17 \text{ day}^{-1}$ RRM (no BG constraint): $\sin^2 2\theta_{13} = 0.060 \pm 0.039$, BG rate: $0.93 \pm 0.40 \text{ day}^{-1}$

RENO

- 2011.8-2013.12 (800 days)
- Also reactor rate modulation analysis
- Shape analysis is on the way
- **Reduced systematics but worsened by ²⁵²Cf contamination**

Singapore 2015 $\sin^2 2\theta_{13} = 0.090 \pm 0.008(stat.) \pm 0.008(syst.)$

<u>Daya Bay</u>

- 2011.12-2013.11 (621 days)
- Detailed and precise corrections for E non-linearity
- Continue to improve: reduced backgrounds and systematics
- Rate + Shape analysis for nGd events
- Rate analysis for nH events

C.Zhang, Neutrino14 & W.Wang, ICHEP14

Daya Bay Results

Systematics at Daya Bay

Side-by-side calibration: Multiple detectors at near sites

Backgrounds at DC

- Major backgrounds for reactor exp.
 - ⇒ Cosmogenic neutron/isotopes: ⁸He/⁹Li and fast neutron
 - ⇒ Ambient radioactivity: accidental coincidence
- Direct measurement of backgrounds:
 - → 7 events in 7.24 days
 - \Rightarrow 12.9^{+3.1}_{-1.4} expected
 - \Rightarrow Tension @ ~ $2\sigma \rightarrow$ no room for unknown backgrounds

Remarkable Improvements on θ₁₃

Future Prospects

- Precision still dominated by statistics
- Continue to improve systematics
- Precision expected:
 - ➡ Daya Bay:
 - $\Delta(\sin^2 2\theta_{13}) \sim 0.003 \Rightarrow \sim 3\%$
 - $\Delta(\Delta m_{ee}^2) \sim 0.07 \Rightarrow \sim 3\%$
 - ➡ RENO: ~5%
 - ⇒ Double Chooz: ~10%

◆ Determining Mass Hierarchy ◆ Precision measurement of θ₁₂, Δm²₂₁ and Δm²₃₁ ⇒ JUNO ⇒ RENO-50

Determine MH with Reactors

Precision energy spectrum measurement interference between P_{31} and P_{32} $\rightarrow \phi$: Relative measurement

Further improvement with $\Delta m^2_{\mu\mu}$ measurement from accelerator exp. $\rightarrow \Delta m^2_{ee}$: Absolute measurement

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

 $\frac{1}{2}\sin^2 2\theta_{13} \left[1 - \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}} \cos(2|\Delta_{ee}| \pm \phi) \right]$

- A fixed definition Δm_{ee}^2

JUNO for Mass Hierarchy

UNO

JUNO Physics

- JUNO has been approved in Feb. 2013. ~ 300 M\$.
- is a multiple-purpose neutrino experiment

- 20 kton LS detector
- **3% energy resolution**
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - ⇒ Supernovae neutrino
 - ➡ Geoneutrino
 - Solar neutrino
 - ⇒ Atmospheric neutrino
 - ⇒ Exotic searches

Neutrino Physics at JUNO, arXiv:1507.05613

High-precision, Giant LS detector

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	$6\%/\sqrt{E}$	$5\%/\sqrt{E}$	$3\%/\sqrt{E}$
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

Sensitivity on MH

PRD 88, 013008 (2013)	Relative Meas.	Use absolute Δm^2
Statistics only	4σ	5σ
Realistic case	3σ	4σ

JUNO MH sensitivity with 6 years' data:

	Ideal	Core distr.	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Real	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4	-1	-0.5	-0.1	+8

Precision Measurements

Current Status & Brief Schedule

- Ground breaking in Jan. 2015
 - ⇒ 500 m slope tunnel excavated out of 1340 m
 - 75 m vertical shaft excavated out of
 611 m
- Central detector using acrylic
- International Collaboration formed w/ 380 members from 55 institutions in 12 countries/regions

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2017 PMT production: 2016-2019 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

<u>RENO-50</u>

 An underground detector consisting of 18 kton ultra- lowradioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit (Yonggwang) nuclear power plant

• Goals :

- \Rightarrow Precision meas. of θ_{12} and Δm_{21}^2
- Determination of mass hierarchy
- Study neutrinos from reactors, (the Sun), the Earth, Supernova, and any possible stellar objects
- Budget : \$ 100M for 6 year(Civil engineering: \$ 15M, Detector: \$ 85M)

Schedule

- ⇒ 2014-2019: Facility and detector construction
- ⇒ 2020~ Operation

J-PARC neutrino beam

Dr. Okamura & Prof. Hagiwara

Detection of J-PARC beam : ~200 events/year

Reactors

- \Rightarrow JUNO: approved, data in 2020, 3-4 σ in 6 years.
- ⇒ RENO-50: R&D

Atmospheric

- INO: approved, data in 2019-2020, 3σ in 10 years
- \Rightarrow PINGU: planned, data in 2021, 3σ in 4 years
- \Rightarrow ORCA: planned, data in 2020, 3σ in 4 years
- → Hyper-K: planned, data in 2025?

Accelerator

- ▷ NOvA: operation, 1/3 chance at 95% CL
- \Rightarrow **DUNE:** 10 kton from 2024, 40 kton from 2027, >5 σ for all CPs

Reactor Anomaly

- Short baseline experiment observed deficit comparing to an improved flux model (Huber+Mueller) (Mention et al.)
- Daya Bay measurement of absolute Flux
 - \Rightarrow Data/(Huber+Mueller): 0.947 \pm 0.022
 - \Rightarrow Data/(ILL+Vogel): 0.992 \pm 0.023
 - → Consistent with others

Future Reactor Exp. for Sterile Neutrino

Different technologies: (Gd, Li, B) (seg.)(movable)(2 det.)

SOLID@BR2, Belgium

Most have sensitivity 0.02~0.03 @∆m~1eV² @90%CL

Prospect@HFIR, ORNL

Nucifer@Osiris, Saclay

Stereo@ILL Grenoble

> DANSS@KNPP Udomlya

Posseidon@PIK, Gatchina,~ 2 y delay Neutrino4@SM-3, Dimitrovgrad

🗙 Korean project

CARR site, Beijing (Not funded)

NuLat@NIST And later on ship

J. Learned

Lhuillier, Neutrino 2014

Example: PROSPECT

More Examples: NEOS, Neutrino-4

~Jul 2015	Aug~Sep 2015	Oct 2015~Mar 2016 ~	
Detector Construction & Commissioning & Installation on site	Reactor Overhaul Maintanance	Reactor On	
	Reactor Off data	Reactor On Data	

Neutrino-4, waiting for filling

Search for Light Sterile Neutrinos

- Precise reactor neutrino spectrun from Daya Bay near site can test the sterile neutrino hypothesis
- ► ~400 m baseline is not ideal for the reactor anomaly → much better exclusion in 0.001-0.1 eV² region

$$ar{
u}_e
ightarrow ar{
u}_e) \simeq 1 - \cos^4 heta_{14} \sin^2 2 heta_{13} \sin^2 \left(rac{\Delta m_{ee}^2 L}{4E_
u}
ight)
onumber \ - \sin^2 2 heta_{14} \sin^2 \left(rac{\Delta m_{41}^2 L}{4E_
u}
ight)$$

Daya Bay: PRL113, 141802, 2014

Measurement by shape distortion

5 MeV Bump on Reactor Spectrum

- Significance ~ 4σ
- Events are reactor power related & time independent
- Events are IBD-like:
 - ⇒ Disfavors unexpected backgrounds
- No effect to θ₁₃ at DYB, RENO; under control at DC
- Possibly due to forbidden decays (PRL112, 2021501, 2014, arXiv:1407.1281)

Absolute Reactor Flux and Spectrum

Absolute neutrino spectrum

- Unfolded from the positron spectrum after non-linearity correction. Most precise reactor spectrum.
- ➡ Unfolding bias 0.5% between 2.2-6.5 MeV

e+ spectrum uncertainty 0.9% @3.5 MeV

Short Baseline Exp. with Gas TPC

- ♦ Gas TPC detector at ~20 m from a reactor (J. Cao, L.J. Wen)
 - → v-e scattering
 - ➡ High energy precision (<3%/sqrt(E))</p>
- Major motivation: high precision reactor neutrino spectrum
 - ⇒ Input for JUNO. Daya Bay energy resolution 8%, JUNO 3%
- Other motivations:
 - \Rightarrow The weak mixing angle θ w
 - ⇒ Abnormal magnetic moment
 - ⇒ Sterile neutrino

 $\begin{array}{l} \mbox{MUNU exp:} \\ \mu_{\nu} < 0.9 \times 10^{-10} \ \mu_{B} \\ \mbox{CF}_{4} \ , \ \mbox{T} > 700 \ \mbox{keV} \\ \mbox{PLB} \ 615(2005)153 \end{array}$

Summary

- Significant improvement on Sin²2θ₁₃ precision from the Daya Bay, Double Chooz and RENO experiments.
- Ultimate precision of Sin²2θ₁₃ will reach ~ 3-4%
- A precision measurement of the absolute neutrino flux and spectrum from Daya Bay.
- A bump around 5 MeV observed by all three experiments.
- Reactor Anomaly may have a definite answer before 2020.
- Reactor neutrinos will play important roles on:
 - → Mass hierarchy
 - Precision measurement of 3/6 mixing parameters up to <~1% level → unitarity test of the mixing matrix</p>
 - ⇒ Sterile neutrinos
 - ⇒ Other Neutrino properties

Thanks !