Physics potential of INO-ICAL

Amol Dighe TIFR, Mumbai, India (For the INO-ICAL Collaboration)

Workshop on neutrino programs with facilities in Japan, Aug 4-6th, 2015

Some good news started this year...

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

National Centre of the Government of India for Nuclear Science & Mathematics HOMI BHABHA ROAD, COLABA, MUMBAI- 400 005

> Telephone : 2278-2227 Fax : 2280-4610

> > 05.01.2015

Press Release

The Union Cabinet of the Govt. of India chaired by the Prime Minister, Shri Narendra Modi, has given its approval for the establishment of India-based Neutrino Observatory (INO) at an estimated cost of Rs. 1500 crores.

The INO project is jointly supported by the Department of Atomic Energy and the Department of Science and Technology. Infrastructural support is provided by the Government of Tamil Nadu where the project is located. Tata Institute of Fundamental Research (TIFR), Mumbai is the host institute for INO.

But there is a long way to go.....

The INO-ICAL White Paper

NO/ICAL/PHY/NOTE/2015-01 Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

The ICAL Collaboration

arXiv:1505.07380v1 [physics.ins-det] 27 May 2015

The location of INO

The cavern

ICAL Modules in the main cavern

The ICAL detector: desiderata

- *Large target mass* (50 100 kt)
- Good tracking and Energy resolution (Tracking calorimeter)
- Good directionality for up/down discrimination (Nano-second time resolution)
- Charge identification capability (uniform, homogeneous magnetic field)
- Ease of construction & Modularity
- Complementarity to the other existing / proposed detectors

The ICAL detector

The magnetic field

The active detector: RPC

The detector specifications

No of modules	3	
Module dimension	16 m X 16 m X 14.4m	
Detector dimension	48.4 m X 16 m X 14.4m	
No of layers	150	
Iron plate thickness	5.6cm	
Gap for RPC trays	4 cm	
Magnetic field	1.4 Tesla	
RPC unit dimension	195 cm x 184 cm x 2.4 cm	
Readout strip width	3 cm	
No. of RPCs/Road/Layer	8	
No. of Roads/Layer/Module	8	
No. of RPC units/Layer	192	
Total no of RPC units	28800	
No of Electronic channels	3.7 X 10 ⁶	

Atmospheric neutrino flux

Athar, Honda, Kajita, Kasahara, Midorikawa, arXiv:1210.5154 [hep-ph] Physics potential of INO-ICAL

Angular distribution of neutrino flux

Athar, Honda, Kajita, Kasahara, Midorikawa, arXiv:1210.5154 [hep-ph]

Physics potential of INO-ICAL

Simulation framework

NUANCE	$\begin{array}{c} \label{eq:constraint} \textbf{Neutrino Event} \\ \textbf{Generation} \\ \nu_{\ell} + N \rightarrow \ell + X \ . \\ \text{Generates particles that result} \\ \text{from a random interaction of a} \\ \text{neutrino with matter using} \\ \text{theoretical models for both} \\ \text{neutrino fluxes and cross-sections.} \end{array}$	Output: (i) Reaction Channel (ii) Vertex and time information (iii) Energy and momentum of all final state particles
GEANT	Event Simulation	Output:
	$\ell + \Lambda$ through simulated ICAL Simulates propagation of particles	(1) x, y, z, t of the particles as they propagate through detector
	through the ICAL detector with	(ii) Energy deposited
	RPCs and magnetic field.	(iii) Momentum information
DIGITISATION	Event Digitisation (X, Y, Z, T) of final states on including noise and detector efficient	Output: (i) Digitised output of the previous stage
	Add detector efficiency and noise	
	to the hits.	
ANALYSIS	Event Reconstruction (E, \vec{p}) of ℓ, X (total hadrons)	Output: (i) Energy and momentum of
	Fit the muon tracks using	muons and hadrons, for use in
	Kalman filter techniques to	physics analyses.
	reconstruct muon energy and	
	momentum; use hits in hadron	
	snower to reconstruct hadron	
	mormation.	

Event distribution (NUANCE)

Relative contributions of three cross-section processes to the total events in the absence of oscillation and without detector efficiency and resolutions

Inelasticity distribution

Inelasticities in individual events have a wide distribution

Important to measure inelasticity in individual events

Physics potential of INO-ICAL

A typical CC event in ICAL

Using GEANT4 simulation

Detector response to muons

Physics potential of INO-ICAL

Detector response to hadrons

 $E_h = E_v - E_\mu$ (from hadron hit calibration)

Hadron energy resolution: 85% at 1 GeV and 36% at 15 GeV

Moon Moon Devi, Anushree Ghosh, Daljeet Kaur, Lakshmi S. Mohan etal., JINST 8 (2013) P11003

Typical analysis technique

We define the Poissonian χ^2_- for μ^- events as :

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2} ,$$

where

- -

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

Observable	Range	Bin width	Total bins
E_{μ} (GeV)	[1,4)	0.5	6
	[4, 7)	1	3 > 10
	[7, 11)	4	1]
$\cos \theta_{\mu}$	[-1.0, -0.4)	0.05	12
	[-0.4, 0.0)	0.1	4 21
	[0.0, 1.0]	0.2	5
$E'_{\rm had}~({\rm GeV})$	[0, 2)	1	2
	[2, 4)	2	1 4
	[4, 15)	11	1)

- 1) Overall 5% systematic uncertainty
- 2) Overall flux normalization: 20%
- 3) Overall cross-section normalization: 10%
- 4) 5% uncertainty on the zenith angle dependence of the fluxes
- 5) Energy dependent tilt factor:

 $\Phi_{\delta}(E) = \Phi_0(E) \ [E/E_0]^{\delta} \approx \Phi_0(E) \ [1+\delta \ln E/E_0]$ where $E_0 = 2 \text{ GeV}$ and

 δ is the 1σ systematic error of 5%

Importance of hadron information

Distribution of $(\Delta \chi^2 / area) [\chi^2 (IH) - \chi^2 (NH)]$ for mass hierarchy discrimination considering μ^- events

Hadron energy information not used

Hadron energy information used

Mass hierarchy sensitivity: ICAL alone

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

MH sensitivity dependence on mixing angles

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

50 kt ICAL can rule out the wrong hierarchy with median $\Delta \chi^2 \approx 7$ to 12 depending on the true values of θ_{23} and θ_{13} in 10 years

Synergy with T2K and NOvA (at deltaCP=0)

 3σ median sensitivity can be achieved in 6 years (deltaCP=0)

Physics potential of INO-ICAL

Synergy at other DeltaCP values

ICAL works even in the ``unlucky'' deltaCP range....

Sensitivity to atmospheric mixing parameters

Significant improvement in the precision measurement of atmospheric mass splitting by adding hadron energy information with muon momentum

Reach for atmospheric mixing parameters

Octant sensitivity

0.8

Other analyses in progress

- Search for sterile neutrinos
- CPT violation and Non-Standard Interactions
- Search for magnetic monopoles
- Search for dark matter from the Sun
- Long range forces
- Exploiting NC events
- Possibilities of electron detection

Current status of INO project

- Site infrastructure development
- Development of INO centre at Madurai city (110 km from underground lab)
 - Inter-Institutional Centre for High Energy Physics (IICHEP)
- Construction of an 8m x 8m x 2.1 m engineering prototype module
- Detector R&D is now over
- Detailed Project Report for Detector and DAQ system is ready
- Soon go for industrial production of RPCs & associated frontend electronics

Water cooled copper conductor

Prototype: the next step

The prospects

- Good muon tracking, charge ID and sensitivity to multi-GeV hadrons makes ICAL a unique multipurpose detector
- Sensitive primarily to mass hierarchy, but also to many other new physics possibilities
- Synergy with ongoing and upcoming long baseline experiments
- Waiting for final go-ahead to start making the tunnel (t=0)
- The first module expected to start taking data at t=5 years

Thank You

• Collaborators are welcome...

<u>http://www.ino.tifr.res.in/ino</u> <u>nkm@tifr.res.in</u> (Naba Mondal, Spokesperson)