NuPRISM in the
TZK Era




Overview

e NuPRISM is a, water Cherenkov detector that spans a wide angular range
(7 1°-4°) off-axis from the neutrino beam direction

e This type of detector can perform a wide variety of interesting neutrino
physics measurements

1. NuPRISM can greatly reduce neutrino interaction uncertainties in T2K
and Hyper-K

e These may be the largest uncertainties for the full TRK dataset

2. NuPRISM can perform a high precision search for sterile neutrino
oscillations

3. NuPRISM can determine neutrino interaction final states from
mono-energetic neutrino beams

e FKlectron-scattering-like measurements are now possible

e Very interesting probe for nuclear physics, and to constrain the
relationship between neutrino energy and observable lepton
kinematics

4. NuPRISM is expected to provide a unique and precise constraint on ove/0v,
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e Neutrino oscillations are a function of neutrino energy

e However, E, cannot be directly measured from final state particle kinematics
e Ifonly the outgoing muon 4-momentum is measured, Ey is determined assuming:
e The neutrino direction is known (good assumption)
e Detectors are far from the beam source
e The target nucleon is at rest (ilmnarginal assumption)
e Adds an irreducible smearing to the neutrino energy resolution
e The recoiling nucleon mass is known (problematic assumption)
e This is only correct for interactions with a single nucleon
e Some experiments (e.g. LAr) attempt to measure the energy of the outgoing hadrons
e Requires knowledge of neutron kinematics (problematic assumption)



The B, Mea,surement Problem
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® L aJPge inC O nS iSt enC ie S in G VS ¥ E A% ' «10° Multinucleon Feed-down on Oscillated Flux

measurements led to a reexamination of v- B SK Oscillated Flux

nucleus interactions Ev—Erec Smearing
(Ev=0.8 GeV)

e (Correlations between nucleons causes a
“feed down” in reconstructed E,

e This feed down directly impacts the
sensitivity to oscillation parameters

ND280 Flux

 Modeling this feed down is very EVZI; o Ssmees\r/i)
difficult, and current models have large |
disagreements

e NDRZ8O0 is largely insensitive to this effect




Effect on TRK v, Disappearance

Create “fake data” samples with flux and cross

section variations

e With and without multi-nucleon events

For each fake data set, full TRK near/far oscillation

fit is performed

e For each variation, plot difference with and
without multi-nucleon events

For Nieves model, “average bias” (RMS) = 3.6%
For Martini model, mean bias = -2.9%, RMS = 3.2%
e Full systematic =V (2.9%2*+3.2%%) = 4.3%

o This is expected to be one of the largest
systematic uncertainties for the full T2K run

But this is just a comparison of & models

e How much larger could the actual systematic

uncertainty be?

A data-driven constraint is needed
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T2K Systematic Uncertainties

Fractional error on # of events | v, sample | v, sample v, sample | v, sample
v flux 16% 11% 7.1% 8%
v flux and w/o ND measurement 21.8% 26.0% 9.2% 9.4%
cross section w/ ND measurement 2.7% 3.1% 3.4% 3.0%
From v cross section due to difference of 5 0% 4.7% 10% 9.8%
N1l N - hae® nuclear target btw. near and far P P ° o7
talk yesterday [EGiEIRIESENELRY 3.0% 2.4% 2.1% 2.2%

Hadronic Interaction

Super-K detector 4.0% 2.7% 3.8% 3.0%

total w/o ND measurement 23.5% 26.8% 14.4% 13.5%

w/ ND measurement 7.7% 6.8% 11.6% 11.0%
e For T2K*3, the goal is to reduce these errors to the 2-3% level
e The largest systematic errors are due to neutrino interactions

e However, the O vs C errors shown above will be somewhait
reduced when ND280 water targets are incorporated

e This may appear to suggest that we have a chance to reach
few percent errors with the current near detectors

e But these errors rely on the current model
(and just a normalization uncertainty on multinucleon events)



Will We Ever Have a Reliable Model?

(“Ever” = before everyone at this workshop retires)

ND280O Vi V beam mode

o The 3% flux & cross section uncertainties on the
previous page are derived from the ND280 fit

e The results of this fit push important flux and cross
section uncertainties well outside of their prior
errors
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o 20% flux variations in the oscillation region are
concerning, given our knowledge of the flux
(see Sekiguchi-san’s talk from yesterday)

o Ifa 0% flux change is too large, the current cross
section model does not describe ND280 data

e MEC normalization moves from 0.27 £ 0.29
to 1.03 = 0.17

e Ifno prior constraints on single-u parameters are
used, MEC normalization moves to 1.56 + 0.26

e Have we already reached a systematic limit?

e While it is certainly true that we need to understand ve
& anti-ve cross sections to measure ocp (Tnore on this
later), we cannot do precision oscillation physics
without a much more precise understanding of v-
nucleus interactions

NC Coherent

CC Other Shape
CC Coherent '“C
CC Coherent '°0O




Can the E, problem be

solved experimentally?




NuPRISM Detector Concept
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NuPRISM Detector Concept
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NuPRISM Detector Conept
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NuPRISM Detector Concept
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NuPRISM Detector Conept
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NuPRISM Detector Concept
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NuPRISM Detector Concept
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Benefits of a Monoenergetic Beam

e First ever measurements of
NC events with B,
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e Much better constraints on
NC oscillation backgrounds

e FHirst ever “correct”

measurements of CC events

5 - Linear Combination, 0.9 GeV Mean
with B

—— 1 Ring u Event Spectrum

N
-
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Absolute Flux Error

e No longer rely on final state
particles to determine E,

Shape Flux Error

Statistical Error
—— NEUT QE
—— NEUT Non-QE

Events/50 MeV
)
S
S

e It is now possible to separate
the various components of
single-u events!




uPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments
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NuPRISM in Oscillation Experiments

Reproduce Super-K Oscillation
Pattern at a Near Detector!
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The nuPRISM v,
Disappearance Analysis




HBree Distribution

e For now, collapse 2D muon p,0 Previously, the entire
distribution into 1D E,.. plot predicted E... distribution

at Super-K was based on

e Notice the NuPRISM and SK Bl cxtrapolation

distributions disagree

e Ifthey didn’t, we would have no 35 — E,.. SK with Osc
Cross section systematic errors | — E,.. Linear Comb
(modulo variations in the flux) | | |

o Differences are from detector
acceptance & resolution, and
imperfect flux fit

e Super-K prediction is largely based
on the directly-measured NuPRISM
muon kinematics!

e Now, only a small amount of model
extrapolation is needed

e TZK measurements are now
largely independent of cross
section modeling!



NuPRISM v, Disappearance Constraint
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NuPRISM v, Disappearance Constraint
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NuPRISM v, Disappearance Constraint
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More Physics!

NuPRISM can do more than just improve
long-baseline measurements




Sterile Neutrinos

MiniBooNE

= 2_55_ — fom A multi-kton detector, ~ 1 km from a 600 MeV
§ 2§+ * — Rl neutrino beam is well suited to confirm or
Y ey + B misd refute the MiniBooNE/LSND event excesses
1.5 ‘ I dirt
| ol Background NuPRISM has the additional benefit of
continuously sampling a variety of L/E values

e COscillation signal and backgrounds vary
differently vs off-axis angle

E0 | NaPRISIM | #2500 This provides an additional handle on
<n many uncertain backgrounds (e.g. NC
single-photon production)
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Sterile Neutrino Analysis

e To compute first sensitivities, make several conservative
assumptions

e No constraint from the existing near detector (ND280)
e Hventually, a powerful 2-detector constraint will be incorporated
e No constraints on background processes

e nuPRISM should provide control samples for all of the major
backgrounds to impose strong data-driven constraints

e Assume Super-K detector efficiencies and resolutions

e NuPRISM has smaller phototubes, and should perform better
closer to the wall (which is important, since the diameter is
much smaller)

e Significant increase in ve statistics is expected

e Since this analysis is still statistics limited, any additional TK (or
eventually Hyper-K) running will improve the sensitivity



Current Sterile-v Sensitivities

] LSND 99% CL
[ ] LSND 90% CL
—— nuPRISM 90% C.L
nuPRISM 35 C.L.
-~ nuPRISM 50 C.L,

30% reduction

I LSND 99% CL
[ | LSND 90% CL
— nuPRISM 903 C.L.
NuPRISM 36 C.L.
-+ nUPRISM 56 C.L

in 9 background
or m° uncertainty
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LAr1-ND, 6.6e+20 POT (100m)

gnal: ( Am? = 0.43 eV ?, sin® 26, = 0.013) ==

atistic: T600, 6.6e+20 POT (600m)
MicroBooNE, 1.32e+21 POT (470m)

LAr1-ND, 6.6e+20 POT (100m)
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[ LSND 90% CL
] LSND 99% CL
% LSND Best Fit
+ Global Best Fit (arXiv:1303.3011)
1242 Global Fit 90% CL (arXiv:1303.3011)
+  Global Best Fit (arXiv:1308.5288)
Global Fit 90% CL (arXiv:1308.5288)

Events / GeV

1 1.5 2 25
Reconstructed Energy (GeV)

10%:"
10"

'T2K Exposure 3

10” 107 10"

Much of the LSND allowed region is
already excluded at 3-50

Much better limits expected as the
analysis improves

Current sensitivity is comparable to
Fermilab short-baseline program

More importantly, Fermilab SBN has
less power to rule out background
explanations than NuPRISM



NuPRISM ve Appearance (CPV)
Q step approach:

Step 1: Measure Super-K ve response Step 2: Measure nuPRISM v, response
with nuPRISM v, with nuPRISM v,

— SKBeam+Osc. v, — VPRISM v, (2.5-4.0°)

— VPRISM v, Linear Combo. -

vPRISM v, Linear Combo. |

High-E is above 3
muon acceptance —

Ifo(ve) /o(vy)=1 -
this fit is all ]
that is needed

Measure
o(ve) /o(vy)
2 2.5 0.5 1 1.5
E, (GeV)

J_||L||IL|||HII|'"'|""|""|""|""|'E

Step 1 is the ve version of the v, disappearance analysis

Step & uses only nuPRISM to measure o(ve)/o(Vyu)

e High energy disagreement is above muon acceptance

Need large mass near detector to make a few percent measurement of 6(ve)/o(vy)
(NDR280 target is a few ton, NuPRISM target is a few kton)




Constraining the ve Cross Section

e Water Cherenkov detectors can achieve high ve purities

o In TRK, &.50 intrinsic ve events vs 0.96 NC events
= 77% ve purity

e Studies to optimize PMT size/granularity to maximize
ve purity in NuPRISM are ongoing

e NUuPRISM can also make use of higher off-axis angles:

Off-axis ve Flux vy Flux Ratio
50% increase angle (°) 0.3-0.9 GeV  0.3-5.0 GeV ve/vy

1.24E+15 2.40E+17 0.507%

in ve fraction
from 2 so tO . 1.14E+15 1.90E+17 0.600%

3 0
4.00 Off'aXIS : 1.00E+15 1.47E+17 0.679%
8.65E+14 1.14E+17 0.760%




Ve Cross Section Precision

e For 10%% POT, expect 9340 ve single-e (i.e. CCQE-like) interactions
e 2.5°-4.0°range
e 0.83<E,<0.9 MeV
e 2 m fiducial volume

e Assuming Super-K efficiency, this would provide a 1.3% statistical error
on Nve/ va

e Backgrounds will dilute the sensitivity, but NuPRISM can make very
precise in-situ measurements of the backgrounds

e v¢/v, flux uncertainty is 3.2% (5.2%) in the 300-600 (600-900) MeV range

e If hadron production uncertainties are reduced by half, ve/v, flux
uncertainty is reduced to 1.7% (3.4%)

e 3% uncertainty may be achievable

e NuPRISM ve¢/v, flux matching technique provides a unique
measurement of (d=ove/dpd0) / (d=oy,/dpd6)



v Cross Section Measurements

0.3

0.25 » GGM, NP B135, 45 (1978), C H, CF Br

T&K v, disappearance is subject to
large NCr* uncertainties

e NUANCE (MA=1.1 GeV)

NCn* at TRK

e ] existing measurement — cco
[ ] v:+V: CCother
| v+, CC

I \C

e vVvPRISM can place a strong
constraint on this process vs Ey

o(v p — v, (1 078 cm2/ nucleon)

NuPRISM is an ideal setup to
measure proton decay backgrounds

Reconstructed v, energy [MeV]

e Repeat p—e'n°® background
measurement from K2K 1 kton K2K e*n® Bkgd
detector Measurement

MINERVA K* Prod.

Measurement

x10°

MINERvA Preliminary
0.35 Stat + Syst Errors

e 50% of the p—K"v background
is from v-induced K+ production

POT Normalized
3.48E20 POT

e Production rate has large

KT data

number of events
do/dT, (cm?/nucleon/GeV)

uncertainties NEUT(solid)
NUANCE(dashed)
Hyper-K proton decay o[, Jramenamns SHME 300 300 400 500 600
measurements a’Pe baCkground total invariant mass [Mevu'cz;m

K* kinetic energy (MeV)

limited, so these measurements
are crucial N(Mtyr~") = 1.63+042(stat) * 043 (syst).




Design Considerations




NuPRIS; M Detector

e At 1 km, need 50 m tall tank to spa,n 1-4°'off*a.X18 ‘a,ngle ‘

e Instrument one subsection of the ta,nk at d tlme wu:h a moveable detector
e Baseline design: .

« Inner Detector (ID): 6 m or 8 m diameter, 10 m tall

e 8”and 5” PMTs are both under study
e  Quter Detector (OD): 10m diameter, 14m tall
e Default plan is to use HK prototype 20” PMTs

e Toimprove sand muon tagging (precise entering position and time),
OD is surrounded by scintillator panels

‘|| ""mm!“




Timescales

Water Cherenkov construction was
studied for the T2K 2 km detector
proposed in 2005

NuPRISM construction time is faster

e Same pit depth as the 2km detector,
but no excavation of a large cavern
at the bottom of the pit

e Smaller instrumented volume
e No MRD or LAr detector

< & year timescale from ground
breaking to data taking

Goal is to start data taking soon after
the J-PARC 7O0KkW beam upgrade
expected in 2018

e More than half of the TRK POT wrill
be taken after the beam upgrade

e Aiming for ground breaking in 2016

0ld T2K 2 km Schedule

Year 2 Year 4

Preparation ]

Excavation _

MRD detector preparation || GGG

Liquid Argon Assembly I
MRD Installation [ ]
Water tank construction

]
Liquid Argon installation -

Surface facilities

PMT module preparation

Ligid Argon (surface)

Liquid Argon (Cryogenic)

Water system

Water Ch. (PMT etc)

MRD electronics

L.Ar. filling and purifying ]
Water filling and purifying ]

B Facility construction

| Detector construction (on site)

 Detector construction (off site, i.e., @J-PARC)
B Pure water and liquid Argon production

TIK
2km detector




Project Costs

e Current estimates of the project Cost Summary

cost come from: Tem  Cost(USMS)

Cavity Construction, Including HDPE Liner 6.00

% % > *Surface Buildings 0.77

® DlPeCt COIlSlllt&thIlS W].th * Air-Conditioning, Water, and Services 0.50

*Power Facilities 0.68

I‘Ila,I‘lU.fa,CtllPePS *Cranes and ]ti)levator 0.31

*PMT Support Structure 1.27

3,215 8-inch PMT's 4.30

e The T2K 2km detector PMT Electronics 1.45

* *PMT Cables and Connectors 0.13

pPOpOS&l ( ) Scintillator Panels 0.36

Water System 0.35

: Gd Water Option 0.15

e (Company estimates have been “GPS System 0.04

Total 16.31

obtained for cost drivers (civil

construction and PMTSs)
Hamamatsu PMT Quotes

e (ivil construction cost could
increase after geological
survey of the chosen site - iMPTMI}‘QE

8” HPD HQE 2 ,296 264 000 6061\/[ 2014

+ TFor PMTs, both high G i - s | mam oo

. . 20”7 PMT HQE 30 508 604,500 307M | 2014
efficiency (HQE) and hybrid WD | s | 52000 o] w018
30 508 539,500 |274M| 2016

phOtOdeteCtOPS (HPD) are 508 715,000 [363M| 2014
30
30

s = 508 617,500 |314M| 2015
under consideration o | mavann |aau| o




Synergies with Hyper-K
e The systematic error constraints provided by .
NuPRISM will be required in the Hyper-K era

e NuPRISM will become a Hyper-K near detector Timing Resolution vs Signal Pulse Strength

e Need to understand whether NuPRISM can ADGs & shapers

# BOOMSPS - 15ns sh.

control cross section systematics before s SOUSPS- e
HypeP'K Sta,PtS ta,king data . % 250MSPS - 30ns sh.

100MSPS - 15ns sh.
100MSPS - 30ns sh.

e Hyper-K is considering in-water electronics
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e NuPRISM allows in-water electronics to
be tested, and provides unique accessibility
due to its ability to move out of the water

15 20
Signal Pulse Height (mV)

e A large scale PMT water tank test for Hyper-K
PMTs is being planned, and NuPRISM can fill this role

e FHven if NuPRISM is not ready for the start of this test, it can be coordinated to
make use of the detector hardware when it is ready to operate

e This may fund a useful portion of the experiment
e NuPRISM provides new physics and a cohesive program between T2K and Hyper-K

e Analogous to the Fermilab SBN program



Requirements for TRK*S3

Fractional error on # of events | v, sample | v, sample v, sample | v, sample
v flux 16% 11% 7.1% 8%
v flux and w/o ND measurement 21.8% 26.0% 9.2% 9.4%

Cross section ./ ND measurement 2.7% 3.1% 3.4% 3.0%

—— sin%0,,=0.40

— smze 53=0.50
— sin%,,=0.60
— Stat. Brr. Only
---- 2% Sys. Errs.
— . 3% Sys. Errs.

.............. 7% Sys. Errs. ’,('x ‘ M. FPleIld

‘‘‘‘‘‘‘‘‘‘‘‘ s
Yesterday

v cross section due to difference of
nuclear target btw. near and far

Final or Secondary 3.0% 2.4% 2.1% 2.2%
Hadronic Interaction

Super-K detector 4.0% 2.7% 3.8% 3.0%
total w/o ND measurement 23.5% 26.8% 14.4% 13.5%
w/ ND measurement 7.7% 6.8% 11.6% 11.0%

5.0% 4.7% 10% 9.8%

15 20 25 30
POT [x10%]

Feed-down on Oscillated Flux
K Oscillated Flux |
e If 023 is close to maximal, it will not be Ev(*;:g %mGe:\r/i)ng
possible to measure ocp at 30 without > Mulinucleon
2-3% uncertainties

e It is quite possible that we will not
understand v-nucleus interactions with
that precision with ND280 alone

e A direct experimental constraint is V of R > c s
needed

e A new, large water detector is needed to * R yok gt

—_— \lmnlh NE (l a with total ervor

constrain ve cross sections at the few v - RPG mode vic ::;,;:j:_::,.:.:_;..z:,::,';
percent ].eve]. Free nucleon with M =102 Ge




Summary

e We are entering an era where the la,rgeSt uhcerta,inties in
neutrino oscillation experiments will be determined by poorly
understood models

e NuPRISM provides an experimental solution to the neutrino
energy measurement problem

e NuPRISM will produce a wide variety of other interesting
measurements

e A unique sterile neutrino search
e Nuclear physics from mono-energetic beams

e Enhanced measurements from existing Super-K data (e.§.
ATM sub-GeV CPV)

e A wide variety of unique cross section measurements and
model constraints

e These physics goals can be achieve within the currently allocated
beam time for TRK (no additional beam time is required)

e NuPRISM can supply an exciting physics program that bridges
the gap between TRK and Hyper-K




Supplement




[ ) >
—=1.0°-2 ()° —— VPRISM Anti-v Mode v, Flux
Anti-neutrinos > e

e TZ2K can switch between v-mode
and anti-v-mode running by
switching the beam focusing

e Anti-v-mode NuPRISM analysis is
the same as for neutrinos

vPRISM Anti-v Mode v,, Flux

vPRISM v, Linear Combo.

e HEXcept with a much larger
neutrino contamination

e (Can use v-mode v, data to
construct the v, background in
the anti-v-mode anti-v, data

o After subtracting neutrino
background, standard nuPRISM
oscillation analyses can be
applied to anti-neutrinos




Event Pileup

e Full GEANT4 simulation of water and
surrounding sand

e Using T2K flux and neut cross section model

e 8 beam bunches per spill, separated by
670 ns with a width of 27 ns (FWHIM)

o 923%/36%/11% chance of OD light in a bunch
at 1.3°/3.3°/3.3° degrees off axis

e Simple cut on OD light may be too crude

e (Can use the scintillator panels to tag
entering particle locations

e 4.6%/1.7%/0.8% of bunches have ID activity
from more than 1 interaction

e [Use the reconstruction to either veto
multiple vertices (or multiple rings), or just
reconstruct each vertex

ID, OD and intermediate
volumes

e Significant advances in multi-ring
reconstruction are now available

Pileup Rates at 1 km Look Acceptable!



Pion Multiplicity Throw
1.15

10

More on Beam Errors|

e Haven’t we just replaced unknown cross section
errors with unknown flux errors

1.1F — SK MC (Random Throw)/Nominal
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e Yes! But only relative flux errors are important!

e (Cancelation exist between nuPRISM and far
detector variations

Proton Beam -1 mm Y Shift
1.15

10

¢ Normalization uncertainties will cancel in the
vPRISM analysis

SK Prediction Rat

e (Cancelations persist, even for the vPRISM linear
combination

e Shape errors are most important

e For scale, 10% variation near the dip means

~ ° ° . y Horn Current +5 kA Change
1% variation in sin<2023

1.15

p—
p—

e Although this region is dominated by feed down

e Full flux variations are reasonable

SK Prediction Ratio

e No constraint used (yet) from existing near
detector!




Reminder; Standard Oscillation
Experiment Technique

Nuclear model Predicted by

poorly understood
Observed far models :
detector signal: CCQE: i +p _\\ AEE— B tmianaously
: (p unObsewed) P : 1.21 GeV/c?  0.45 | shape constrain ﬂux
1-ring muon events e G and cross section
\ pr 12C : 217 MeV/c 30 | shape parameters with
\ 25 MeV 9 shape
T~ CCr*: pr + N + 1 \ | Do 1ion) | e a near detector
Ak CC Other shape ND280 all 0.0 0.40 | shape
T e (p, " unObsewed) Pion-less A Decay all 0.0 0.2 | shape
L e - : CCQE E1 0<E, <15 1.0 )11 | norm
L . g SE R : . CCQE E2 1.5< E, <35 1.0 . norm
o '11 W ! ’ Composed CCDIS: ”_ + x CCQE E3 E, > 35 1.0 0.30 | norm
: ‘h » ‘ Of (x unobserved) CClr E1 0<E, <25 1 0.43 | norm
oS . ' CClrm E2 E,>25 . . norm
CC Coh all .C .C norm
NC1x° all 0.96 0.43 | norm 3
Nc"+o -I-I-"' +n NC 17* ¢ . 0.3 | norm Often Wlth &
S 3 NC Cab ’ | 3 | vomm different nuclear
(" mISIdentlﬁed, NC other g : norm
target and
n unobserved)
U/ Ve ¢ . 0.0: norm pha;se Space

v/v a . 0.40 | norm

«10° Multinucleon Feed-down on Oscillated Flux

«10° Multinucleon Feed-down, ND280 Flux

SK Oscillated Flux ND280 Flux
Fluxes are Ev— Erec Smearing

also quite (Ev=0.8 GeV) s eant Very difficult
S to deconvolve!
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Reducing Statistical Errors

Unconstrained Fit

Off -axi sA gle (deg ees)

t
o
w

e Flux predictions contain Monte
Carlo statistical uncertainties

Fitted Coefficien
o
N

o
—

o

e Strongly affect fit results

e Instead, can enforce that
neighboring bins must have
similar weights

 Results in smooth variation of

weights across off-axis angles B -

Offa sA gle (degr ees

Fitted Coefficient
o
O

o
o
N

e Variance of weights is reduced
by an order of magnitude

e Significant reduction in
statistical uncertainties




