

PRECISION ICECUBE NEXT GENERATION UPGRADE

Future atmospheric neutrino measurements with multi-megatonne Water Cherenkov detectors

Workshop for Neutrino Programs with facilities in Japan

Tokai Japan August 5, 2015

Darren R Grant

The atmospheric neutrino signal

The IceCube Neutrino Observatory

IceCube Array 86 total strings, including 8 DeepCore strings

IceCube

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

IceCube

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

IceCube

IceCube-DeepCore

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing

IceCube-DeepCore top view

 10 MeV	 100 MeV	I I GeV	l0 GeV	 100 GeV	l I TeV	 0 TeV		l EeV
				DeepCore			IceCube	

The atmospheric neutrino signal

Oscillations with Atmospheric Neutrinos

- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach

Oscillations with Atmospheric Neutrinos

- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach
- Atmospheric neutrinos oscillating over one Earth diameter have a v_µ survival minimum at ~25 GeV, below ~10 GeV sensitivity to the mass ordering (near ~500 MeV potentially to CP-violation)

Atmospheric neutrino oscillations with DeepCore

- Analysis focused on utilizing clear µ tracks (reducing contamination from cascades, including v NC and v_e CC)
- Require several non-scattered photons in selected events; making it relatively easy to reconstruct:
 - 10° resolution in neutrino zenith (equivalent to path length)
 - 25% resolution in neutrino energy

Atmospheric neutrino oscillations with DeepCore

Atmospheric neutrino oscillations with DeepCore

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory - Generation 2 (GEN2)

The IceCube Neutrino Observatory - Generation 2 (GEN2)

IceCube-DeepCore-PINGU

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing
- Add 40 strings (baseline target)
 - ~20m string spacing
 - 3-5m DOM spacing
 - ~15x higher photocathode density

Top view of the PINGU new candidate detector

100 (Ê) ≻₅₀ IceCube DeepCore PINGU -50 -100 -150 200 X (m) -50 150 -100 50 100 0

I 10 MeV	 100 MeV	l GeV	I0 GeV	 100 GeV	l TeV	 0 TeV		I EeV
advantaga			PINGU	DeepCore			IceCube	

- advantages include:
 - Use of the similar hardware and deployment techniques as IceCube would significantly reduce project risk
 - Could be quick, dependent on funding (2 years of procurement and fabrication; 2-3 years of deployment)

IceCube-DeepCore-PINGU physics program

- Precision atmospheric neutrino oscillation measurements at a few GeV with very high statistics (focus today's talk)
 - measurements of the neutrino mass ordering
 - precise measurements of Δm_{23}^2 , θ_{23}
 - high statistics measurement of v_{τ} appearance
- Probe lower mass WIMPs
- Increased sensitivity to supernovae v bursts
- Earth tomography
- For full details refer to the PINGU Letter of Intent (arXiv:1401.2046); updates coming this Fall

$$\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$$
$$\sin^2(2\theta_{23}) = \frac{\pi}{4}$$
$$P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

$$\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$$
$$\sin^2(2\theta_{23}) = \frac{\pi}{4}$$
$$P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

$$\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$$
$$\sin^2(2\theta_{23}) = \frac{\pi}{4}$$
$$P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

Using atmospheric neutrinos to measure the NMO

Up to 20% differences in v_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

Darren R. Grant - University of Alberta

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences clearly visible in expected atm. muon (v + ν) rate even with 1 year's data
 - Note: detector resolutions not yet included here

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences clearly visible in expected atm. muon (v + ν) rate even with 1 year's data
 - Note: detector resolutions not yet included here

PINGU and the NMO

arXiv:1401.2046

- Distinctive (and quite different) hierarchy-dependent signatures are visible in both the track and cascade channels
 - Quantity shown is an illustration of statistical significance per bin (as per Akhmedov et al. arXiv:1205.7071)
 - Full MC for detector efficiency, reconstruction, and particle ID included

PINGU and the NMO

arXiv:1401.2046

- Currently two methods used to extract the NMO significance: χ^2 (pull) and Likelihood ratio
 - output of full simulation and reconstruction parameterization (pull method) are used
 - analysis completed in energy x cos(zenith) space in 2 particle ID bins
 - the "other" hierarchy parameter is chosen to minimize distinguishability

PINGU and the NMO - predicted sensitivity

- With baseline geometry, a determination of the mass hierarchy with 3σ significance appears possible with ~3.5 years of data
 - Vetted against full Monte Carlo studies with complete range of systematics

systematics dominated by uncertainties in the oscillation parameters; no prior on θ₂₃ or Δm². Detector includes rate/normalizrion (free), energy scale (10%). δcp held fixed. Flux includes ratio e/µ, v/anti-v, flux uncertainties.

PINGU and the NMO - predicted sensitivity

- With baseline geometry, a determination of the mass hierarchy with 3σ significance appears possible with ~3.5 years of data
 - Vetted against full Monte Carlo studies with complete range of systematics

¹ M.C. Gonzalez-Garcia et al. JHEP 11, 052 (2014) on R. Grant - University of Alberta

PINGU and the atmospheric mixing parameters

• Expected constraints of atm. oscillation parameter precision comparable to NOvA and T2K (projected)

The ORCA detector

• Proposed upgrade of the ANTARES detector as a part of KM3NeT. Planned 115 strings at 20 m spacing with 18 (multi-PMT) optical modules per string

The ORCA detector

• Proposed upgrade of the ANTARES detector as a part of KM3NeT. Planned 115 strings at 20 m spacing with 18 (multi-PMT) optical modules per string

- Currently constructing a 6-string demonstrator
- multi-PMT optical modules also under development by IceCube for Gen2

Summary and outlook

- IceCube-DeepCore has demonstrated the ability to measure atmospheric neutrino oscillations with sensitivity starting to approach dedicated oscillation experiment.
- Neutrino telescope technology applied to more densely instrumented arrays holds the potential to produce enormous detectors for precision atmospheric neutrino measurements.
 - neutrino mass ordering to 3σ in 3-4 years with a full detector
 - improved precision measurements of atm. oscillation parameters
 - enhanced sensitivity to v_{τ} appearance, low-mass indirect WIMP searches, etc.
- This detector approach builds on existing expertise, reducing project risk and presenting the opportunity for relatively fast construction. The project timeline is currently only limited by agency funding, not technological challenges.
- PINGU final optimized detector Letter of Intent is now under collaboration review; public this Fall. ORCA currently preparing deployment of 6 demonstrator strings of KM3NeT multi-PMT modules.

Backup Slides

PINGU particle identification

PINGU event reconstruction resolutions

Neutrino interaction cross-section uncertainties

- x-section uncertainties from GENIE
- Strongest impact from:
 - axial mass parameters for CCQE and hadron resonance production
 - Bodek-Yang higher twist parameters for DIS
- small additional effect compared to existing systematics studied

v_{τ} appearance

- utilizes a similar analysis to that for the mass ordering
- reaches a 5 sigma observation in a matter of months...

NMO sensitivity for various detection techniques

Sources: arXiv:1311.1822, arXiv:1401.2046v1, arXiv:1406.3689v1, Neutrino 2014, LBNE-doc-8087-v10