T2K-SK Status and Outlook

Mike Wilking

Workshop for Neutrino Programs with Facilities in Japan August 4th, 2015

Overview

- T2K-SK Event Selection
 - Current Selection
 - Future Improvements
- T2K-SK Systematic Errors
 - Current Errors
 - Future Improvements
- Topics to address:
 - Consider an exposure of $2*10^{22}$ POT
 - 50% v, 50% anti-v
 - What is required for percent-level Super-K detector systematic errors?

Current Event Selection

• Designed to select CCQE-like events

Expanding the Selection

- CP violation sensitivity is limited by $\nu_{\rm e}$ statistics
 - Current v_e selection efficiency is 66% (assuming 2 m fiducial volume cut)
- Cuts with the most efficiency loss:
 - Single-ring (86.7%)

- Zero Michels (89.1%)
- $E_{rec} < 1250 \text{ MeV} (95.9\%)$
- fiTQun π^0 cut (92.0%)
- Further Improvements
 - Expanding the fiducial volume
 - ▶ ~ 30% of SK ID volume is not used
 - Improved reconstruction (fiTQun)
 - Better PID, ring-counting, etc.

T2K-SK v_e Selection

		$ u_{\mu} + \overline{\nu}_{\mu}$	$\nu_e + \overline{\nu}_e$	$\nu + \bar{\nu}$	$\nu_{\mu} \rightarrow \nu_{e}$
	MC total	$\mathbf{C}\mathbf{C}$	$\mathbf{C}\mathbf{C}$	NC	$\mathbf{C}\mathbf{C}$
interactions in FV	656.83	325.67	15.97	288.11	27.07
FCFV	372.35	247.75	15.36	83.02	26.22
(1) single ring	198.44	142.44	9.82	23.46	22.72
(2) electron-like	54.17	5.63	9.74	16.35	22.45
(3) $E_{\rm vis} > 100 {\rm MeV}$	49.36	3.66	9.68	13.99	22.04
(4) no Michel election	40.03	0.69	7.87	11.84	19.63
(5) $E_{\nu}^{\rm rec} < 1250 {\rm MeV}$	31.76	0.21	3.73	8.99	18.82
(6) not π^0 -like	21.59	0.07	3.24	0.96	17.32

264/399 events expected for 10^{22} POT

(assuming $\sin^2 2\theta_{13} = 0.1$, $\sin^2 \theta_{23} = 0.5$, $|\Delta m^2_{32}| = 2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP} = 0$, $\Delta m^2_{32} > 0$)

Which Event Topologies are Being Lost?

- Percentages relative to current signal:
- CCle(16%)
- CCπ⁺ (28%)
- CCπ⁰ (7%)

• Other (2%)

CCπ⁺ with π⁺ → π⁰
 (2%)

(assuming $\sin^2 2\theta_{13} = 0.1$, $\sin^2 \theta_{23} = 0.5$, $|\Delta m^2_{32}| = 2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP} = 0$, $\Delta m^2_{32} > 0$)

Zero Michels Cut

- By loosening this cut, can accept v_e -CC π^+ events with a π^+ below Cherenkov threshold
 - Can reconstruct neutrino energy assuming a Δ recoil
- Adds 13% more signal with similar purity
- Further improvement may be possible using fiTQun

No Decay Electron (Nominal)

One Decay Electron (New)

	QE	15.84		QE	2.43
Sig. CC	1π	1.91	$ u_e + \overline{\nu}_e$ CC	1π	0.41
	Coh	0.05		Coh	0.01
(17.83)	Oth.	0.03		Oth.	0.04
	QE	0.05		$1\pi^0$	0.78
$ u_{\mu}\!+\!\overline{ u}_{\mu}$ CC	1π	0.02	NC	$1\pi^{\pm}$	0.15
	Coh	0		Coh	0.21
	Oth.	0.001		Oth.	0.36
TOTAL	22.29				

	QE	0.02		QE	0.003
	1π	1.94	$\nu_e + \overline{\nu}_e$ CC	1π	0.32
Jig. CC	Coh	0.25		Coh	0.04
(2.30)	Oth.	0.09		Oth.	0.03
	QE	0.17		$1\pi^0$	0.01
$ u_{\mu} + \overline{ u}_{\mu}$ CC	1π	0.07	NC	$1\pi^{\pm}$	0.05
	Coh	0.001		Coh	0
	Oth.	0.009		Oth.	0.09
TOTAL	3.08				

Purity =17.83/22.29 = 80 %

Single Ring Cut

• Remaining $CC\pi^+$ events can be recovered using a $CC\pi^+$ under development

Times (ns

2000

-4000

-2000

0

4000

π⁰ Cut

- Initial cut was tuned for v_e appearance search
 - 8% signal loss was acceptable for stronger π⁰ background rejection
- For CP violation search, more π^0 background is acceptable
 - Particularly with 50/50
 v/anti-v running
- Additional improvements can also increase the efficiency
 - e.g. moving the cut as a function of E_{rec}
- May allow us to remove E_{rec} cut completely (4% of signal)

Expanding the Fiducial Volume

- Current FV cut removes all events with a reconstructed vertex within 2 m of the tank wall
 - Removes 30% of the total inner detector volume
 - For events pointed away from the wall, this is excessive
 - For events pointed at the wall,
 2 m may not be sufficient
- Considering a 2D cut in "towall" and "wall" (see diagram)
 - Remove events where both these values are small

one sub event NoTitle 450E 400Ē 350 300 250 E 200 150 100 600 700 ToWall [cm] position resolution 450E 100 Au 350Ē 300 250 E 200 150

> 600 /00 ToWall [cm]

More on Fiducial Volume

- When setting the FV boundary, also need to consider backgrounds
 - π⁰'s near the wall are more likely to lose a photon
- The hybrid-π⁰ sample is being used to constrain this effect
 - Combine a 1-ring e-like event from data with a MC photon
- Entering background falls away at wall near 1 m
 - Could perhaps recover around 15% of events

"Efficiency" to Misreconstruct π^0 events as ν_e

600

800 1000 1200 1400 1600 1800 2000

wall (cm)

Super-K Detector Systematic Errors

- Current T2K-SK detector errors are largely set by fitting the atmospheric neutrino data
 - Use a T2K-like selection, and determine errors from data/MC differences
 - Current errors on the v_e sample are 3%
- This method necessarily folds in uncertainties on neutrino interactions and the atmospheric neutrino flux
 - Treatment of these errors directly impacts size of detector systematic errors
- Alternative methods not involving atmospheric neutrinos are under investigation (more later)

Review of T2K-SK Detector Error Procedure

- Select very pure, relatively high statistics, samples in Atm-ν data with only 1e or 1μ in final state (FS)
- Effectively parameterize detector systematics with PID, RC and π⁰ cut parameters (β)
 - Shifts the likelihood of a given event
- Constraints from cosmic μ and other background control samples
- Combine Atm-v samples into a fit to extract data-MC discrepancies and propagate as systematic error on T2K prediction using toy MC

NC 1π[±] and NC Other ~ 60-100%

January 14, 2014

Patrick de Perio, James Imber: SK Detector Systematics

3

Fit Results

- Uncertainties are calculated in bins of visible energy
- Total detector error is a quadrature sum of:
 - "fit error": the error bar from the fit
 - "shift error": the deviation of the fit value from zero
- Large v_e shift error seen in the 0.7-1.25 GeV bin
 - Above this energy, the π^0 cut is not used
 - Atmospheric 2-ring data looks more π⁰-like than atmospheric MC
- To reduce error, must understand what detector mismodeling is responsible for the shift
 - Or perhaps modeling of the atmospheric flux or neutrino cross sections is the problem...

Cross Section Errors

- Current neutrino cross section parametrization does not match what is used in ND280 5
- These errors are included in the asmospheric fit and then marginalized
 - In some sense, we are double counting cross section errors
- Ideally, this treatment should be updated to reflect our current understanding of neutrino cross sections

Joint SK Detector + Cross Section Error Matrix

One possible solution is to use ND280 fit as input into SK atmospheric fit, and produce a joint SK detector & cross section error matrix

- Requires using ND280 cross section parametrization in SK atmospheric fit
- Energy distribution of SK atmospheric events is different than T2K energy distribution
 - Can cross section model parameters from ND280 fit span this difference?
 - Other cross section errors are likely required

0

- Still need to marginalize over SK atmospheric flux uncertainties
 - SK atmospheric flux parametrization may also need to be updated

Reducing Systematic Errors

- What will happen if we improve the treatment of the atmospheric flux and neutrino cross sections in the atmospheric fit?
 - Will have a more rigorous treatment of SK detector errors
 - However, there is no guarantee this will reduce the errors
- Fundamentally, detector errors are due to detector mismodeling
- We currently make several simplifications in detector modeling, e.g.
 - No time-dependent MC (data is corrected at the reconstruction level)
 - No PMT-by-PMT gain calibration (data corrected in reconstruction)
 - Reflections, water quality, PMT acceptance, etc. are mostly uniform across the tank (exception: absorption is linear with depth)

• ...

- To reach **percent-level errors**, may need to refine the details of the **calibration and simulation**
 - This requires a significant undertaking, but there is already a lot of good work to draw from within the Super-K calibration group

Future Systematic Error Possibilities

- All "detector" errors are due to imperfect modeling of the detector
 - A perfectly understood detector would have no detector systematic uncertainties
- Current method mixes flux and cross section uncertainties into the detector uncertainties
- In principle, it should be possible to account for all detector uncertainties by **propagating uncertainties in the detector modeling**
 - Water quality (top-bottom asymmetry), PMT performance (angular acceptance, QE, charge response), reflectivity of PMTs an black sheet
 - i.e. perform variations of low-level parameters, and constrain these parameters with side-band and calibration samples
 - This requires a sufficient understanding of how to parametrize the detector performance
 - This is the method used in ND280 and even other Cherenkov detectors, such as MiniBooNE
- Likely a long term project, but solves many problems if it can be accomplished

Summary

- T2K-SK v_e statistics increase of 40% to 60% may be possible (my rough guess)
 - $CC\pi^+$ with below Cherenkov pions (~13%)
 - Multi-ring events ($CC\pi^+$, $CC\pi^0$, etc.) (up to 20%)
 - Looser and better π^0 and E_{rec} cuts (~5%)
 - Enlarge the fiducial volume (10-15%)
- Purity may also suffer somewhat
- T2K-SK detector systematic errors are at the 3-4% level
 - Treatment of atmospheric flux and cross section parameters will be improved
 - Possibility to move to a detector-driven approach is under investigations
- To significantly improve the error, more detailed treatment of calibration and simulation may be required