Low energy ν physics with Hyper-K

Yusuke Koshio (Okayama U.)

Workshop for Neutrino Programs with facilities in Japan @J-PARC on 6th Aug., 2015

Neutrino sources

6th Aug. 2015

2

Supernova neutrino

Supernova 1987A

23rd Feb. 1987, 7:35 (UT), @50kpc

If it happens now?

Super-Kamiokande

Workshop for neutrino program in Japan

6 The flux v

on the solar Figure 33

KamLAND

IceCUBE

Giga-ton detector

Physics motivation

What we can learn

- ✓ Core collapse physics
 - explosion mechanism
 - proto-neutron star cooling
 - black hole formation
- ✓ Multi-messenger analysis
 - with gravitational wave,

gamma-ray, X-ray, telescope..

- ✓Neutrino physics
 - neutrino oscillation

Measurements of neutrino flavor, energy, time profile are the key points

How often in our Galaxy?

Star Formation Rate (SFR) and Supernova Rate (SNR) Estimates

for the Galaxy

Diehl et. al. 0601015

Authors	SFR [M _∞ y ⁻¹]	SNR [century ⁻¹]	Comments
Smith et al. 1978	5.3	2.7	
Talbot 1980	0.8	0.41	
Guesten et al. 1982	13.0	6.6	
Turner 1984	3.0	1.53	
Mezger 1987	5.1	2.6	
McKee 1989	3.6 (R) 2.4 (IR)	1.84 1.22	
van den Bergh 1990	2.9 ± 1.5	1.5 ± 0.8	"the best estimate"
van den Bergh & Tammann 1991	7.8	4	extragalactic scaling
Radio Supernova Remnants	6.5 ± 3.9	3.3 ± 2.0	very unreliable
Historic Supernova Record	11.4 ± 4.7	5.8 ± 2.4	very unreliable
Cappellaro et al. 1993	2.7 ± 1.7	1.4 ± 0.9	extragalactic scaling
van den Bergh & McClure 1994	4.9 ± 1.7	2.5 ± 0.9	extragalactic scaling
Pagel 1994	6.0	3.1	
McKee & Williams 1997	4.0	2.0	used for calibration
Timmes, Diehl, Hartmann 1997	5.1 ± 4	2.6 ± 2.0	based on ²⁶ Al method
Stahler & Palla 2004	4 ± 2	2 ± 1	Textbook
Reed 2005	2-4	1-2	
Diehl et al. 2005	3.8 ± 2.2	1.9 ± 1.1	this work

Table 1: Star formation and core-collapse supernova rates from different methods.

6th Aug. 2015

Workshop for neutrino program in Japan

Generally a few per century.

Latest estimate of galactic core-collapse supernova rate is $3.2^{+7.3}$ -2.6 per century. Adams et. al. 1306.0559

31.25 years per SN

cf. 28.45 years since SN1987A

Water Cherenkov detector (Full volume 0.74Mton)

~168000 ev (ve IBD) ~2300 ev (¹⁶O CC) ~7000 ev (v-e es) ~8300 ev (¹⁶O NC γ)

at 10kpc, 4.5MeV energy threshold

6th Aug. 2015

Workshop for neutrino program in Japan

Water Cherenkov detector (Full volume 0.74Mton)

Determine starting time with ~0.03 msec precision.

6th Aug. 2015

Workshop for neutrino program in Japan

Time (sec)

Water Cherenkov detector (Full volume 0.74Mton)

Hyper-Kamiokandestance(kpc)

Water Cherenkov detector (Full volume 0.74Mton)

~168000 ev (ve IBD) ~2300 ev (¹⁶O CC) ~7000 ev (v-e es) ~8300 ev (¹⁶O NC γ)

at 10kpc, 4.5MeV energy threshold

6th Aug. 2015

Workshop for neutrino program in Japan

Angular distribution

at 10kpc, 4.5MeV energy threshold

6th Aug. 2015

Workshop for neutrino program in Japan

Neutrino and gravitational wave

- Both detectors placed in the same mountain is good for the time domain multi-messenger astronomy.
- Realistic detector simulation showed the potential to estimate the progenitor core rotation.

T.Yokozawa's et.al. arXiv 1410:2050

Nearby Galaxy

SN Distance vs Detection Probability with N Hit Threshold

For SN at 2 Mpc, we will detect N≥3 events at 20-65% probability.

For SN at 4Mpc, N≥1 events are expected at 31-56% probability.

Spallation BG contamination will be 1.3 ~ 2.6 ×10⁻³ events. (2-4 times of SK.)

with 0.56 kt, in 18 sec.
E>18MeV.

S.Ando

S.Ando

Solar neutrino

Solar neutrino

 \rightarrow ~10⁷years radiated from the center to the surface.

? Nuclear fusion reaction in the sun

This reaction is actually realized via pp-chain and CNO cycle.

✓ Measurement of the current status in the center of the sun
✓ Study of

- a mechanism of the energy generation in the sun
- a property of neutrinos

Standard solar model

pp-chain

Solar neutrino observation

in Water Cherenkov detector

Workshop for neutrino program in Japan

Super-Kamiokande

Solar neutrino oscillation

Day-Night asymmetry

32

Day-Night asymmetry in SK

Day-Night asymmetry in HK

To see the spectrum up-turn

Workshop for neutrino program in Japan

To see the spectrum up-turn

Huge effort of energy calibration

To see hep neutrino

- It can be seen with 40% P.C. cannot with 14% P.C..
 - ~300 events/ 5Mt years (>17MeV)

 $BS05(^{14}N)$

BS05(OP)

BS05(AGS,OP)

BS05(AGS,OPAL)

5.99

5.99

6.06

6.05

1.42

1.42

1.45

1.45

7.91

7.93

8.25

8.23

4.89

4.84

4.34

4.38

5.97 •

5.84

3.25

3.31

3.11

3.07

2.01

2.03

5.83

5.69

4.51

4.59

2.38

2.33

1.45

1.47

Summary

✓ When core-collapse supernova happens in or nearby our galaxy, Hyper-K has many interesting physics potential.

 ✓ Hyper-K is possible to perform a precise measurement of SRN, especially spectrum.
✓ Solar neutrinos; neutrino oscillation, solar model, etc. are possible to be studied very precisely.

Summary

A meeting "Astrophysics neutrino observation at Hyper-Kamiokande" was held on 15th May, 2015, at Kobe University.

Many researchers also outside neutrino community are interested in and support Hyper-K.

