150804 Nu in J WS @ Tokai

Potential J-PARC beam power improvement and beam delivery before 2026

Working assumption for this workshop and future studies

T. Kobayashi

MR (30GeV)

30GeV Acceleration by new operation point with two bunches

Peak:40mA, Macro:0.5ms, Chop:489ns, Thining:32/32 2bunches, Trim-Qs:ON, Trim-Ss:ON, Inj.KM: (K1,K2,K2,K2) Chrom. Corr. of 75% DC for reduction of instability

Tunable knobs: Injection kicker, BxB feed-back, 2nd harmonic cavity, VHF cavity

Bunch number	repetition period (sec)	Beam power (kW)	Beam Ioss (kW)	Notes
2	2.48	132	0.42	measurement
8	2.48	530	1.7	estimation
8	1.3	1000	3.2	estimation
	Bunch number288	Bunch numberrepetition period (sec)22.4882.4881.3	Bunch numberrepetition period (sec)Beam power (kW)22.4813282.4853081.31000	Bunch number repetition period (sec) Beam power (kW) Beam loss (kW) 2 2.48 132 0.42 8 2.48 530 1.7 8 1.3 1000 3.2

Mid-term plan of MR

FX: The high rep. rate scheme is adopted to achieve the design beam intensity, 750 kW.
Rep. rate will be increased from ~ 0.4 Hz to ~1 Hz by replacing magnet PS's and RF cavities.
SX: Titanium ducts & chamber to reduce the residual radiation are required for 50 kW operation.
Beam power will be gradually increased toward 100 kW carefully watching the residual activity.

New middle term plan

Assuming

- Main ring power supply upgrade is funded as we desire during FY2016-2018
- Operating budget is constant at "6.5 cycle" during FY2016-2020
- Vacuum cramp replacement work of hadron primary line is decided to be done
- SX >100kW target strategy need to be discussed and fund need to be found

PAC on Jul16,2015

T.Kobayashi

Mid-term plan of MR

New power projection

T2K expected POT projection

Longer term projection (1)

FY	2015										20	16					20	017	1				20	018					20)19					2	2020)		
	4	7		10		1		4		7		10	1		4	7		10	ן כ	1	4	7		10	1		4	7		10	1		4	7	/	10	5 [1	Π
Acc off																						Μ	IR-P	PS															
Neutrino																																							
Month		1				2			1				5			0			5			0			3			0			5			0			5	j –	
Days/Month		22	22 22						22	2			23			23			23	3		23			23			23			23			23			23	3	
Days		22	44						22	2			115			0			11	5		0			69			0			115			0			11	5	
Live days		19.8	39.6						19.	B		1	03.5		C	0.0			103.	.5		0.0			62 .1			0.0		1	03.5	j		0.0			103	.5	
Hours	4	175.2	2		95	0.4			475	2		24	2484.0		0.0				2484	1.0		0.0			1490.4	ŀ		0.0		2	484.(0		0.0			2484	4.0	
Rep rate		2.48	}		2	.48					2.4	8				2.	48										1.	30						1	.25				
ppb	2.	10E+	-13			2.35	E+1	3					2.60	E+1	3				3.0	00E+1	3				2.40)E+1	3			2.70E+			13				2.	.90E-	+1
ррр	1.0	68E+	-14			1.88	E+14	4					2.08	E+1	4				2.40E+1						1.92	2E+1	4			2.16E+			14				2.	.32E	+1
Power(kW)	3	325.6	6			364	4.4						40	3.1					4	465.1					70	19.9			79			98.6					1	<mark>892</mark> .	1
pot	1.	16E+	-20		2.59)E+2	0	1.	1.30E+20			7.5	0.0	0E+	-00		8.65E	+20	(0.00E+	-00	7	.92E+2	20	0.0)0E+(00	1.4	49E+	· 2 1	0.	00E	+00		1.66E	E+21			
Integ. POT	1.	11E+	-2 1		1.37	/E+2	1	1.	5 0 E	+21		2.2	2.25E+21				3.12E+21			3.12E+	-2 1	3	.91E+2	21	3.9)1E+:	21	5.4	40E+	2 1	5.	40E	+21		7.06E	E+21			
Integ. POT			1.37	/E+2	21					2.	25	E+21	3.12				E+21				3.91	E+2	1				5.40	40E+21			7.0			6E+	6E+21				
MW.1e7s			0.	66							1.0)8					1.	50	50			1.8							2.	59					3	3.39			
T2K experiment	t side	e imp	orov	eme	ents	;																																	
Horn Fac		1.00			1.	.00			1.0	0		1	00.1		1	.00			1.10	0		1.10			1.10			1.10			1.10			1.10)		1.1	0	
Fid vol		1.00			1.	.00			1.0	0		1	00.1		1	.00			1.0	0		1.00			1.20			1.20			1.20			1.20)		1.2	.0	
SK ev smple		1.00			1.	.00			1.0	0		1	00.1		1	.00			1.10	0		1.10			1.10			1.10			1.10			1.10)		1.1	0	
Overall impro		1.00			1.	.00			1.0	0		1	00.1		1	.00			1.2	1		1. 2 1			1.45			1.45			1.45			1.45	5		1.4	,5	
Eff Integ POT	1.	11E+	21		1.37	/E+2	1	1.	50E	+21		2.2	5E+2	21	2.2	5E+	-21		3.30E	+21	:	3.30E+	21	4.45E+21			4.4	5E+2	21	6.61E+21			6.61E+21				9.02E+21		
Eff Integ POT	1.37E+21								2.	25	E+21			3.30	0E+21					4.45	5E+2	1				6.61E+21						9.0	2E+	21					
Eff MW.1e7s			0.	66							1.0)8			1.59							2.14							3.	18					4	1.33			

Longer term projection (2)

FY		2021					2022											20)23							20	024							20)25							20)26					
		7		10	1		4		7		10	1	1	4	4		7		10		1		4		7		10	ו	1		4		7		10		1	Τ	4		7		10		1	4	4	
Acc off																																																
Neutrino																																																
Month	0)			5			(0			5				0					5				0				5				0			;	5				0			5	5			
Days/Month	2	3			23			2	23			23				23	3			2	23			2	23				23			:	23			2	23				23			2	3			
Days	0)			115			(0			11	5			0				1	15				0			1	15				0			1	15				0			11	5			
Live days	0.	0		1	03.5			0.	0		1	03.	5		0.0					10	3.5			0	.0			10)3.5			0	.0			10	3.5			C	.0			8.5				
Hours	0.	0		2	484.0	כ		0.	0		2484.0					0.0)			248	34.0			0	.0			24	84.0			0	.0			248	84.0			C	.0			2484.0				
Rep rate			1. 2	0						1.20								1.	20							1.	.16							1.	.16							1.	16					
ppb					3.30	DE+1	3					3.5	50E-	+13						3	3.70	E+1	3						3.90	E+1	3					3	8.90	E+1	13					4	.00E	+13	1	
ррр					2.64	4 E+1	4					2.8	80E-	+14						2	2.96	E+1	4					3.12E+			4					3	3.1 2	E+1	14					3	.20E	+14	ł	
Power(kW)				_	10	57.4				1121.									1185.6									129	92.8							1 2 9	2.8							1325	i.9			
pot	0.00	E +0 0) [1.9	97E+	21	0	00.	E+0(כ	2.0)9E	+21		0.00E+00					E+2	C	0.00E+00				2.41E+21				0.00)E+(00	2.41E+21				(0.00)E+(00	2	.47	E+21					
Integ. POT	7.06	E+21		9.0)2E+	21	g	.02	E+2	1	1.1	1E	+22		1.	11E	+2	22		1.33	E+2	22	1	.33	8E+2	2		1.5	7E+2	22		1.57	/E+2	22		1.81	E+2	22		1.81	E+2	22	2	.06	E+22	2		
Integ. POT		9.	02E	+21					1.	11E	+22						1	1.33	E+2	22					1	.57	7E+2	22						1.81	E+2	22						2.06	E+2	2				
MW.1e7s			4.3	4						5.3	4							6.	40							7.	56							8.	71				L			9.	90					
																																						Τ									-	
T2K experiment	1																				\square																	T									_	
Horn Fac	1.1	0			1.10			1.	10			1.10)			1.1	0			1.	10			1.	10			1	.10			1.	10			1.	10		1	1	10			1.1	0	Ϊ		
Fid vol	1.2	20			1.20			1.	20			1. 2 (C			1.2	0			1.	20			1.	20			1	.20			1.	20			1.2	20			1	20			1.2	20			
SK ev smple	1.1	0			1.10			1.	10			1.10)			1.1	0			1.	10			1.	10			1	.10			1.	10			1.	10			1.	10			1.1	0			
Overall impro	1.4	5			1.45			1.4	45			1.45	5			1.4	5			1.	45			1.	45			1	.45			1.	45			1.4	45			1	45			1.4	5			
Eff Integ POT	9.02	E+21		1.1	9E+	22	1	.19	E+22	2	1.4	19E	+22		1.	49E	+2	22		1.81	E+2	22	1	1.81E+22		22 2.16E+2			22 2.16E+2			22	1	2.51	E+2	22		2.51E+22		22	2	.876	E+22	2				
Eff Integ POT		1.	19E	+22					1.	49E	+22				1.8					81E+22					2	2.16E+22					2.51					51E+22				2.87				7E+22				
Eff MW.1e7s	5.71					5.71 7.16											8.	70							10	.38			12.06										13	.78								
							1			1		_			-	1			1	-	1		1								1				1			_		-	1		_				_	

Longer term projection (3)

FY	2025						2026								2	202	27			2	202	28						2	029							20	30			
		7		10	1	4		7	1	0	1		4	7	/	ſ	10 1	4	7			10	1		4	1	7		10		1		4		7		10	1		
Acc off																																								
Neutrino																																								
Month	()			5			0 5						0			5		0				5				0				5			()			5		
Days/Month	2	3			23		:	23		2	3			23			23		23				23				23				23			2	3			23		
Days	()			115			0		1	15			0			115		0				115	ō			0			115				0				115	j –	
Live days	0.	0		1	03.5		0	.0		10	3.5		0.0			103.5		0.0				103.	5		0	0.0			10	3.5			0.	0		103.5				
Hours	0.	0		24	484.0		0	.0		248	4.0			0.0			2484.0		0.0			2	484	.0		0	0.0			24	34.0)		0.	0		2	484.	0	
Rep rate			1.1	6					1.16	6					1	.1(6				1.1	6						1.	.16							1.1	6			
ppb					3.90E-	+13				4	.00E	+13	3				4.00E+	13					4.0	0E-	⊦13						4.00)E+1	3					4.00E+1		
ррр					3.12E	+14				3	.20E	+14	4				3.20E+	14	4				3.2	20E-	⊦14				3.20E+				4				:	3. 2 08	E+14	4
Power(kW)					1292	.8					1325	i.9					1325.	9				_	1;	325.	9	9			1325.									132	5.9	
pot	0.00	E+00)	2.4	1E+21		0.00)E+00		2.47	E+21		0.00E+00				2.47E+21		0.00E+00			2.	47E	+21		0.00)E+	00	2.47E+21					0.00	E+0	0	2.	47E+	⊦2 1	
Integ. POT	1.57	E+22	2	1.8	31E+22		1.81	E+22		2.06	E+22	2	2.06E+22				2.31E+22		2.31E+22				55E	+22		2.55E+22				2.80E+22				2.80	E+2	2	3.)5E+	-22	
Integ. POT		1.	81E	E+22				2.0	96E	+22			2.31				+22		2.55				E+22				2.80)E+22				3.05			5E+22			
MW.1e7s			8.7	'1				9	9.90)					1	1.0	8			1	2.2	27						13	.45				14			14.	64			
T2K experiment																																								
Horn Fac	1.1	0			1.10		1.	.10		1.1	0			1.10)		1.10		1.10				1.10)		1.	10			1.	10			1.1	0			1.10		
Fid vol	1.2	20			1.20		1.	20		1.	20			1.20)		1.20		1.20				1.20)		1.	20			1.	20			1.2	20			1.20		
SK ev smple	1.1	0			1.10		1.	10		1.1	0			1.10)		1.10		1.10				1.10)		1.	10			1.	10			1.1	0			1.10		
Overall impro	1.4	5			1.45		1.	45		1.4	15			1.45	5		1.45		1.45				1.45	<u>;</u>		1.	45			1.	45			1.4	15			1.45)	
Eff Integ POT	2.16	E+22	2	2.5	51E+22		2.51	E+22		2.87	E+22	2	2.	87E	+22		3.23E+22		3.23E+	-22		3.	58E	+22	2 3.58E+22				2 3.94E+22				3.94E+22			2	4.30E+22			
Eff Integ POT		2.	51E	E+22				2.8				3.23E			+22	3.				3.58E+22				3.				8.94E+22				4.30E+22								
Eff MW.1e7s	12.06					13.78									1	5.5	i0			1	7.2	22					_	18	95							20.	67			

Assumed ppb & rep cycle

Hardware Improvement (Assumption)

Analysis Improvement (Assumption)

Development of new event reconstruction algorithm for SK

total charge [p.e.]

wall [cm]

10²

E. (GeV)

Integrated POT projection

