
Atmospheric Neutrinos and Proton Decay with 

Hyper-Kamiokande

 

Roger Wendell, ICRR

Workshop for Neutrino Programs with Facili�es in Japan

2015.08.06 

Tokai, Japan



2

R.Wendell (ICRR) 2

Atmospheric Neutrino Genera�on 

 Cosmic rays strike air nuclei and the decay of the 

out-going hadrons gives neutrinos 

P + A  → N + π+  + x

                             µ+ + ν
µ
   →  e+ + ν

e
 + ν

µ

● Primary cosmic rays Isotropic about  Earth 
● ns travel 10 – 10,000 km before detec�on
● Both neutrinos and an�neutrinos in the 

4ux
● ~ 30% of 8nal analysis samples are 

an�neutrinos

● Flux spans many decades in energy  ~100 
MeV – 100TeV+ 

● Excellent tool for broad studies of 
neutrino oscilla�ons
● Access to sub-leading e;ects with high 

sta�s�cs 



3Hyper-Kamiokande: Introduc�on

 Present studies are performed assuming
� 560 kton 8ducial volume 
� Equivalent detector performance for SK 

 No addi�onal improvements rela�ve to Super-K 

analyses 
� Ie, expected improvements in event 

reconstruc�on with 8TQun are not included
� excep�on: “8ner” binning studies exist

 Similarly no extrapola�on of 4ux and cross sec�on 

systema�cs 

Atm n Hyper-K

s
mom

  e / µ 5.6% /3.6% 

s
dir

  e / µ 3.0° / 1.8°

n CC Purity :

FC e-like 94.2 % 

FC µ-like 95.7 %

PC µ-like 98.7 % 



4Super-K Atmospheric n Analysis Samples 
Fully Contained (FC)

Par�ally Contained (PC)

 In total 19 analysis samples: mul�-GeV e-like samples are 

divided into n-like and n-like subsamples  

 Dominated by n
µ
->n

t
 oscilla�ons

 Interested in subdominant contribu�ons to this picture
� Ie three-4avor e;ects, Sterile Neutrinos, LIV, etc. 

Upward-going Muons (Up-µ) 



5Comparison to Current Super-K Exposure 

Hyper-K SK-IV

Fiducial Vol. 560 kton 22.5 kton

Eff. Area 22,000 m2 1500 m2

Protons 1.8 ¥ 1035 7.5 ¥ 1033

Neutrons 1.4 ¥ 1035 6.0 ¥ 1033

Fully Contained µ-/e-like 740,200 41,000 

Partially Contained µ-like   64,400 3,100

Upward-Going µ   83,400 7,400

 Event rates are a comparison between 10 years of Hyper-K and 12.8 

years of SK

� Compare: HK beam events 42,000 n
µ
 and  7,000 n

e

 Analyses exposures have been adjusted to account for di;erence in 

8ducial volume and e;ec�ve area between Hyper-K and Super-K



6Introduc�on

 Some Introductory Material 

 Atmospheric neutrinos as signal 
� Standard PMNS Oscilla�ons
� Sensi�vity to Earth's chemical composi�on 

� Search for Dm
s
 ~ eV2 scale sterile neutrinos

� Search for Lorentz invariance viola�on 
� Comments on leptonic unitarity studies

 Atmospheric neutrinos as background 
� Search for WIMP-induced neutrinos from the galac�c center  
� Search for WIMP-induced neutrinos from the sun
� Proton decay searches 

 Summary
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Atmospheric Neutrinos As Signal
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“Mul�-GeV”“Sub-GeV”

P(ν
µ
→ν

e
)  

Searching for Three-Flavor E;ects: Oscilla�on probabili�es  

P(ν
µ
→ν

µ
 )  

~10,000 km

~100 km

 Key Points

� No n
µ
 Æ n

e
 Appearance above ~20 GeV,

� Resonant oscilla�ons between 2-10 GeV  (for n or n depending upon MH) 
� No oscilla�ons above 200 GeV
� No oscilla�ons from downward-going neutrinos above ~5 GeV  

� Expect e;ects in most analysis samples, largest in upward-going n
e
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“Mul�-GeV”

Oscilla�on E;ects on Analysis Subsamples

P(νµ→νµ )  

~10,000 km

~100 km

d
cp

 = 3p/2

d
cp

 = p/2

“Sub-GeV”

sin2q
23

 = 0.6
sin2q

23
 = 0.5

sin2q
23

 = 0.4
sin2q

23
 = 0.6

sin2q
23

 = 0.5
sin2q

23
 = 0.4

sin2q
23

 = 0.6
sin2q

23
 = 0.5

sin2q
23

 = 0.4

Ra�o to two-4avor 
oscilla�ons 

Appearance e;ects 
are halved in the IH
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T2K 90% Allowed

Hyper-K Sensi�vity 10 Years 

True NH

True IH

Hyper-K 5.6 Mton year

 Expect bePer than ~3s sensi�vity to the mass hierarchy using atmospheric 

neutrinos alone 

 3s Octant determina�on possible if sin22q
23

 < 0.99 



11CP Viola�on Sensi�vity

 Limited sensi�vity to CP-viola�on with atmospheric n alone

 Hyper-K can constrain only about 50% of d
cp

 space at 3s, so one of the CP-conserving 

points is allowed at that C.L.
 Sensi�vity from SubGeV e-like samples becomes limited due to 4ux and cross sec�on 

systema�cs
� Reconstruc�on, systema�c, and analysis improvements possible and expected to help 

considerably 

Hyper-K 5.6 Mton year

3s 
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FiPed Excess

Atm ν BKG MC
SK-I+II+III : 2806 days 

Phys. Rev. LeP. 110, 181802 (2013)

Oscilla�on-induced n
t
 measurements

 Pre-cuts + NN 
� Total selec�on eRciency of 60% 

 Super-K has demonstrated the ability to iden�fy n
t 
events in the atmospheric 

neutrino data ( 3.8s )
 ASer 10 years Hyper-K will have O(2,000) nt events that can be used to study 

� CC n
t
 cross sec�on, leptonic universality, etc. 

per/ 100 kton yr. Hyper-K LBNE

Signal CC nt 40.2 28.5

Background 448.7 44.8

S /÷B , 10 years ~14 ~8 

� HK Numbers are upward-going event rate
� LBNE based on PRD82, 093012



13Geophysics:  Chemical Composi�on of Earth's Outer Core

 Density pro8le of the Earth is well known from seismic measurements
� Outer core is thought to be liquid  iron+Ni and  another light element 

(Unmeasured!)
 Z/A ra�o is important to understanding forma�on of Earth and its magne�c 8eld  
 With 10 years of data Hyper-K can open the 8eld of Earth Spectroscopy
� First Z/A measurement, can exclude lead-based and water-based outer core 
� Longer exposures more useful (want to discriminate iron from pyrolite)



14

Hyper-K SK-IV

|U
µ4

|2 0.029 0.038

|U
t4

|2 0.066 0.164

Hyper-K's sensi�vity to Sterile Neutrino Mixing

 Searches for sterile neutrinos with the atmospheric 

neutrinos are independent of the sterile Dm2 and the 

number sterile neutrinos 

� For Dm
s

2 ~ 1 eV2 oscilla�ons appear fast

 | U
µ4

 |2   Induces a decrease in event rate of µ-like data 

of all energies and zenith angles

 | U
t4

 |2  Shape distor�on of angular distribu�on of higher 

energy µ-like data 

 Sensi�vity gains are limited by 
� 4ux and cross sec�on errors
� BePer knowledge during actual hyper-K running can 

improve these constraints

Super-K
Hyper-K



15Lorentz-invariance viola�ng oscilla�ons 

 Lorentz invariance viola�ng e;ects can be probed using 

atmopsheric neutrinos 
 Analysis using the Standard Model Extension (SME)
 E;ects of LIV controlled by two sets of complex  parameters

� aT

ab
   dim = 3 induces oscilla�on e;ects ~ L  

� cTT

ab
  dim = 4 induces oscilla�on e;ects ~ L ¥ E 

 Hyper-K Sensi�vity will be ~ 3¥  bePer than Super-K 
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Combination of Beam and Atmospheric 

Neutrinos 

Beam and atmospheric neutrino data provide largely complimentary sensi�vity 
with several common systema�c error sources (cross sec�on, detector)
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T2K 90% Allowed

Hyper-K Hierarchy Sensi�vity With Beam Inputs

 NH,   5 Years

Hyper-K 560 kton FV

 Plots for true inverted hierarchy are similar 

 Large bene8t of precise determina�on of q
23

 and Dm2
23

 from the beam 

� Example of bene8t of combina�on with beam (neutrino mode only)
� 1 Year of running:  1.5 ¥ 1021 POT, with 560 kton FV 

 NH,   1 Years

 NH, 10 Years

 NH, Atm n + Beam n
 NH, Atm n 

1 Year of running 



18Combina�on With Beam Neutrinos

 Though atmospheric neutrinos have limited sensi�vity to CP-viola�on rela�ve to 

the beam measurement, the sensi�vity is largely complementary
� Mul�ple baselines and maPer e;ects give weaker degeneracies 

 Addi�on of atmospheric neutrino data to the beam measurement can improve the  

d
cp

 measurement, par�cularly in regions of limited sensi�vity for the beam 

Atmospheric n Beam + Atmospheric n
Beam n
Atmospheric n



19Comment on Leptonic Unitarity
If the PMNS matrix is unitary we expect 

these rela�ons (for l = e, µ, t )

 The pieces of the matrix that can be probed depend on L and E of neutrino source 
� Hyper-K will have both “8xed” L/E (beam) and “varying” L/E (atmospheric n)

 Computa�ons assume that the U
pmns

 is unitary, but this can be tested 

� Models of new physics ( SeeSaw, SUSY) predict U
pmns

 is piece of a larger matrix 

 For LBL nµ disappearance:  

 Hyper-Kamiokande can probe many elements of this matrix by itself with 

combined beam and atmospheric neutrino measurements

Normaliza�on 

Triangle
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If Unitarity is NOT assumed, then to 8rst order 

 Typically single oscilla�on channels are sensi�ve to mul�ple parts of 

the mixing matrix 
� true for any experiment 

 However atmospheric neutrino measurements have suRcient 

breadth in L/E to have some sensi�vity to both “1-2” and “2-3” 

columns of the mixing matrix (in principle) 

� separa�ng U
µ1

 and U
µ2

  with (1.0~3.0 GeV data)  

 To really make progress improvements in detector performance and 

systema�c errors (4ux, cross-sec�on) will be essen�al 

Comment on Leptonic Unitarity



21Global Study of Leptonic Unitarity 
Plots from S.Parke@WIN15 

 Hyper-K Beam + Atmospheric measurements: 
 Contribute to normaliza�ons
� a = µ  (red line)
� a = t  (orange line)
� i  = 3   (brown line)

 Contribute to closure of triangles 
� a,b = e,µ  (cyan line)
� a,b = µ,t  (orange line)
� i,j  = 2,3   (brown line)

 Hyper-K can provide high sta�s�cs 

measurements with full systema�c 

correla�ons to improve (overconstrain) our 

understanding of these rela�ons
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Atmospheric Neutrinos As Background



23
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Search for WIMP Annihila�ons in the Galac�c Center

Blue line is results from SK
Red line is Hyper-K 5.6 Mton year  
sensi�vity

 Data and MC are binned in momentum and direc�on to the galac�c center 
 Signal for a given WIMP mass appears in only some of analysis samples, but is peaked 

towards the galac�c center
� Remaining analysis samples help control background and its uncertainty

 Hyper-K's sensi�vity should exceed Super-K's limits by a factor of 4~5 

WIMP Signal, Best Fit ¥ 15  

cc Æ bb M(c) = 105 GeV / c2

ATM n Background + WIMP  

 cos (q
GC

) Super-K preliminary
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Search for WIMP Annihila�ons in the Sun 

 Similarly the data can be binned in the direc�on to the sun
 Hyper-K limits are expected to be a factor of 3~5 stronger than Super-K in 

the absence of a signal
� Strongest limits on SD interac�ons at low WIMP masses
� Possible to exclude hints for SI interac�ons with hardest channel (t+t-)

Black lines are results from SK
Red lines are Hyper-K 5.6 Mton year sensi�vity 

DAMA/LIBRA PICASSO

SIMPLE

ICECUBE bb

ICECUBE 
W+W-

BAKSAN 
W+W-

BAKSAN t+t-

XENON100

LUX
SuperCDMS

DAMA/LIBRA

CoGENT

CRESSTII

CDMS II Si

BAKSAN bb

*Solar composi�on, VDF, 
Nuclear form factor

**
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Nucleon Decay Physics Potential



27 p Æ e+p0 

p Æ e+p0 

MC

Hyper-K

Signal e 45%

BG / Mton yr 1.6 

10yr. Sens. 90% 1.3 x 1035 yr

SK Limit 90% 1.7 x 1034 yr

 Hyper-K is the only e;ec�ve way to probe this decay 

beyond exis�ng limits 
 ERciency is limited by pion nuclear e;ects in water 
� Prospects for gains with improved reconstruc�on

 Surviving atmospheric neutrino background 
� CC 1-pion processes, Deep inelas�c scaPering 
� OSen accompanied by neutrons ¬   BKG reduc�on

Hyper-K 
Selec�on

preliminary



28 Hyper-K's Sensi�vity to p Æ e+p0 

 If no signal is observedlife�me limits 

t/B > 1035 years possible with  
� 3.6  Mton¥year (red,default)
� 3.0  Mton¥year (green)
� 2.4  Mton¥year (blue)

 Background reduc�on is an essen�al 

component of the Hyper-K nucleon 

decay program 
� poten�al for large sensi�vity gains 

exists

Baseline Analysis 

Improved Analysis cuts 
BKG Reduced by 50%  (n tagging)

BKG Reduced by 70% (n-tagging)

 Super-Kamiokande has demonstrated 
neutron tagging via 

� n + p Æ d + g (2.2 MeV)
 Hyper-K's tagging depends on detector 

con8gura�on, Photocoverage, Gd 
doping etc. 



29 Hyper-K's Sensi�vity to p Æ e+p0 
Baseline Analysis 

Improved Analysis cuts 
BKG Reduced by 50%  (n tagging)

BKG Reduced by 70% (n-tagging)

 Super-Kamiokande has demonstrated 
neutron tagging via 

� n + p Æ d + g (2.2 MeV)
 Hyper-K's tagging depends on detector 

con8gura�on, Photocoverage, Gd 
doping etc. 

 Recently Super-K has found two 
candidates in the mode 

� p Æ µ+p0 (BG = 0.87) 
 Excellent mo�va�on 
� Reduce backgrounds further!
� Build a larger detector!
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Proton Decay : p  → ν K+

K+

ν  K+ momentum is 340 MeV/c
  Below Cherenkov threshold (749 MeV/c)

 However, K+ experiences no nuclear interactions and escapes 
 Strategy: search for evidence of isolated K+ via its decays
Cannot reconstruct the original proton mass 

νµ

K+ → µ+νµ K+ → π+π0BR: 65% BR: 21%

Search Methods
1) Nuclear deexitation γ, µ, and decay e+
2) Monochromatic µ from K+ decay  

Search Method
 3) π+ and two γ from π0 decay

236 MeV/c 205 MeV/c
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Hyper-K's Sensi�vity to : p  → ν K+

Hyper-K

Signal e 7.6 - 37% 

BG / Mton yr 1.8 - 2556 

10yr. Sens. 90% 3.2 x 1034

SK Limit 90% 7.8 x 1033

 Backgrounds from atmospheric neutrino 
kaon produc�on

� n + p Æ nK+L  + g   (poorly measured)
� n + p Æ µ p + g

 Signal eRciency gains possible (likely):
� Improve g  (faster PMTs) 
� improve p+ tagging (8Per. improvement)

 Background reduc�on with n tagging

   

preliminary
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Hyper-K's Sensi�vity to Other Decay Modes 

 Generally speaking, Hyper-K is expected to have an order of magnitude 
bePer sensi�vity than Super-K to many decay channels 

 For background dominated modes, like p Æ e+X, µ+nn, np+ etc., the 
improvement is roughly a factor of 4 or 5 



33

Other Physics at Hyper-K 

 Atmospheric neutrino 4ux measurements
 Tau neutrino studies (oscilla�on-induced, cross sec�on) 
 Non-standard Neutrino Interac�ons in atmospheric neutrinos 
 Search for WIMP annihila�on at the center of the Earth 
 Various nucleon decay modes 
�  p Æ n p+   , n Æ n p0 

�  p Æ l+M0   (other antilepton + meson modes)
�  n Æ l- M+   (Recent theoretical interest)
�  B+L modes
�  dinucleon decay modes 

 n ´ n oscillations 
 Astrophysical neutrino source search 
 ... 

 The statistical uncertainty at Super-K on many of the analyses above 

is large so generically we can expect improvements at Hyper-K 
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Summary 

 Atmospheric neutrino physics at Hyper-K is expected to be expansive and precise
� 3s+ mass hierarchy and octant determina�on 
� Improved sensi�vity to exo�c oscilla�on scenarios

� New studies of n
t
 physics and lepton unitarity

� First measurements of Earth core's chemical composi�on

 In combina�on with the beam neutrino data further precision is expected

 Nucleon decay physics poten�al is equally promising
� Sensi�vity to p Æ e+p0  at t/B > 1035 years  (only with Hyper-K!)
� Sensi�vity to p Æ nK+ at t/B > 1034 years and beyond 
� Order of magnitude increase in sensi�vity in many other modes

 The future of non-accelerator measurements at Hyper-K is bright 
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Supplements
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 p Æ e+p0 

p Æ e+p0 

MC

Hyper-K LBNF

Signal e 45% 45%

BG / Mton yr 1.6 ~1

10yr. Sens. 90% 1.3 x 1035 yr  ~1034

 ERciency and background rates for this mode are similar for Hyper-K and 

LBNE
� This is basically true for other lepton + pion modes  
� Smaller size of LBNE makes it less compe��ve, generally nuclear e;ects are 

expected to be larger 
� Hyper-K is the only e;ec�ve way to probe this decay beyond exis�ng limits

Hyper-K 
Selec�on
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 p Æ n K+ 

K+

µ+ e+

p Æ n K+ 

LAr SoA simula�on

Below Cherenkov threshold in Water

Hyper-K analysis is based on three 
methods of searching the kaon's decay 
producits 

Hyper-K LBNE

Signal e 7.6 - 37% 97%

BG / Mton yr 1.8 - 2556 < 1

10yr. Sens. 90% 3.2 x 1034  3.3 x1034

 LBNE exhibits good sensi�vity to decay modes with a Kaon present 
� Signi8cant advantage over water Cherenkov detectors 

 Most complementary physics 
� If a signal is present, it should be discernible at both HK and LBNE 
� LBNE in-situ measurements of BG kaon processes will help HK 



39Proton Decay Sensi�vity Summary 



40Evidence for n
t
 Appearance at Super-K 

FiPed Excess

Atm ν BKG MC
This corresponds to 

180.1 ±44.3 (stat) +17.8-15.2 (sys) events, a

3.8 σ excess     (Expected 2.7 s signi8cance )

SK-I+II+III : 2806 days 

 Search for events consistent with hadronic 

decays of t leptons 
� Mul�-ring e-like events, mostly DIS interac�ons

 Negligible primary n
t
 4ux so n

t
 must be 

oscilla�on-induced :  upward-going 

 Event selec�on performed by neural network 
� Total eRciency of 60% 

b = 0  : no n
t
 

Result Background DIS (g) Signal

SK-I+II+III 0.94 ± 0.02 1.10 ± 0.05 1.42 ± 0.35
Phys. Rev. LeP. 110, 181802 (2013)
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Neutron Tagging

 Upgraded detector electronics in SK-IV store all PMT hits in a 

500 µsec window aSer a physics trigger 
� Search for the 2.2 MeV gamma from p(n,g)d 

 Search is performed using a neural network built from 16 

variables  
�  Data and MC show good agreement on atmospheric 

neutrino sample 
 Future: Implement neutron tagging to help dis�nguish n/n 

interac�ons and to reduce proton decay backgrounds

2.2 MeV g Selec�on

ERciency 20.5% 

Background / Event 0.018

Compare:

204.8 µs 

t
0
 = n interac�on �me  

Phys Rev. C 
15 (1977) 1636

Geant3

Preliminary 



42Reconstruc�on Related  Hyper-K LBNE

s
mom

  e / µ 5.6% /3.6% 2.4% / 3% 

s
dir

  e / µ 3.0° / 1.8° 1° / 1° 

s
E
  Had. Sys. *** 30/ ÷E %  

s
dir

  Had Sys. *** 10°  

n CC Purity :

FC e-like 94.2 % 97.8 %

FC µ-like 95.7 % 99.7 % 

PC µ-like 98.7 % 99.6 % 

NC n
µ
 

CCQE n
e
 

 LBNE can tag protons as well as Kaons, both of 

which are (mostly) invisible at HK 
 LBNE has very good PID to separate hadrons 

from leptons and create very pure analysis 

samples 
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Sterile Oscilla�ons Results

 Turning o; sterile maPer e;ects while preserving standard three-4avor oscilla�ons 

provides a pure measurement of  | U
µ4

 |2  

 Using sterile maPer e;ects, but decoupling n
e
 oscilla�ons provides a joint  measurement 

of | U
µ4

 |2  and | U
t4

 |2    , with a slightly biased es�mate of the former

MiniBooNE + 
SciBooNE
PRD86,
 052009 (2012) 

CCFR
PRL. 52, 
1384 (1984) 

 Using SK-I+II+III+IV data ( 4438 days)

 | U
µ4

 |2 < 0.041 at 90% C.L.   | U
t4

 |2 < 0.18  at 90% C.L.

SK

PRD.91.052019 (2015)

SK

Unitarity
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Tests of Lorentz Invariance 

 Lorentz invariance viola�ng e;ects can be probed 

using atmopsheric neutrinos 
� Focus here on isotropic e;ects
� (sensi�ve to sidereal e;ects as well...)

 Analysis using the Standard Model Extension (SME)
� Not a perturba�ve calcula�on 
� E;ects computed using full solu�ons of the 

Hamiltonian

 E;ects of LIV controlled by two sets of complex  

parameters

� aT

ab
   dim = 3 induces oscilla�on e;ects ~ L  

� cTT

ab
  dim = 4 induces oscilla�on e;ects ~ L ¥ E 

 

¬(a
eµ

T) 

P(ν
µ
→ν

µ
 )  

¬(a
µt

T)  = 10-22 

¬(C
µt

TT)  = 10-23 
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Constraints on Lorentz Invariance Viola�ng Oscilla�ons:  90% C.L.

 SK-I+II+III+IV : 4438 days of data 
 Perform separate 8ts on both hierarchy assump�ons for each coeRcient and each sector : 

eµ , et, µt
 No indica�on of  Lorentz invariance viola�on 
� Limits placed on the real and imaginary parts of 6 parameters £ O(10-23)  
� New limits on µt sector, improvements by 3 to 7 orders of magnitude over exis�ng limits

PRD.91.052019 (2015)
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S. Antusch,et al. arxiv 

hep-ph/0607020v5.pdf

Non-Unitary

Unitary
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 Hyper-Kamiokande : Size 

Basic Source of Complementarity  

 LBNE : Detailed reconstruc�on 

Hyper-K LBNE

Fiducial Vol. 560 kton 34 kton

Eff. Area 22,000 m2 800 m2

Hyper-K LBNE

s
mom

  e / µ 5.6% /3.6% 2.4% / 3% 

s
dir

  e / µ 3.0° / 1.8° 1° / 1° 

Threshold 
(KE)

C 50 MeV / C 

 Complementary and Compe��ve
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