#### **The Deep Underground Neutrino Experiment**

Kate Scholberg, Duke University on behalf of the DUNE collaboration

Workshop for Neutrino Programs with Facilities in Japan August 5, 2015



# Outline



# - Status of DUNE/LBNF

- Beam
- Near Detector
- Far Detector
- Prototypes
- Timeline

# - Physics prospects

- Long-baseline neutrino oscillation
- Underground physics
  - Proton decay
  - Atmospheric neutrinos
  - Supernova neutrinos



# P5 Recommendation, 2014

Recommendation 13: Form a new international collaboration to design and execute a highly capable Long-Baseline Neutrino Facility (LBNF) hosted by the U.S. To proceed, a project plan and identified resources must exist to meet the minimum requirements in the text. LBNF is the highestpriority large project in its timeframe.

The

minimum requirements to proceed are the identified capability to reach an exposure of at least 120 kt\*MW\*yr by the 2035 timeframe, the far detector situated underground with cavern space for expansion to at least 40 kt LAr fiducial volume, and 1.2 MW beam power upgradable to multi-megawatt power. The experiment should have the demonstrated capability to search for supernova (SN) bursts and for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime.

- international
- 40 kt LAr
- underground



#### **Deep Underground Neutrino Experiment**



- Collaboration officially formed April 2015; evolving rapidly (LBNE+LBNO+others)
- Spokespeople: André Rubbia and Mark Thomson
- International governance based on CERN experiment model
- Currently: 776 collaborators, 144 institutes, 26 countries
- Enabled by LBNF (Long-Baseline Neutrino Facility) which comprises beam, conventional facilities, cryogenics

http://www.dunescience.org

# **DUNE experiment overview**



- 1.2 MW wide-band neutrino beam from FNAL, upgradeable to 2.4 MW
- Highly-capable near detector
- LAr 40-kton fiducial mass far detector

② Sanford Underground Research Facility in SD

- 1300 km baseline
- 4850 ft (2300 mwe) depth
- Four 10 kt modules, installation starting 2021

# **LBNF/DUNE** beam from Fermilab



| Parameter                  | Valu                                                              | le                       |
|----------------------------|-------------------------------------------------------------------|--------------------------|
| Energy                     | 60 GeV                                                            | 120 GeV                  |
| Protons per cycle          | 7.5×10 <sup>13</sup>                                              | 7.5×10 <sup>13</sup>     |
| Spill duration             | 1.0×10 <sup>-5</sup> sec                                          | 1.0×10 <sup>-5</sup> sec |
| Protons on target per year | $1.9 \times 10^{21}$                                              | 1.1×10 <sup>21</sup>     |
| Beam/batch (84 bunches)    | 12.5×10 <sup>12</sup> nominal; (8×10 <sup>11</sup> commissioning) |                          |
| Cycle time                 | 0.7 sec                                                           | 1.2 sec                  |
| Beam Power                 | 1.03 MW                                                           | 1.2 MW                   |

- Proton Improvement Plan (PIP-II)
   @ FNAL will provide >1 GW protons at time of DUNE start
- LBNF beam optimization work underway



6

# **DUNE Near Detector**

Highly capable near detector for **precision measurement of** v **fluxes** required for long-baseline oscillation physics Also: rich program of v interaction physics

#### **Magnetic spectrometer**

- 0.4 T field
- Straw-tube tracker
- Lead-scint ECAL

# Multiple integrated nuclear targets

- **Ar**, C<sub>n</sub>H<sub>2n</sub>, Ca, C, Fe, ..
- Require 10x unosc FD
   rate from Ar targets

#### RPC-based muon tracker



# **LBNF** far detector facilities for DUNE



**Cryostats:** (CERN-FNAL design team) 17.1 kt LAr each Free-standing steel-supported **membrane cryostats** 

Central utility cavern: cryogenics support equipment

# Nominal DUNE far detector technology



17.1-kt total, 13.8-kt active, 11.6-kt fiducial mass

3 Anode Plane Assemblies (APA) w/ cold electronics

Cathode planes (CPA) at 180 kV 3.6 m max drift length

Photon detectors for fast event timing (non-beam physics) Reference design (for first module): horizontal-drift **single-phase time-projection chamber** 



# **Alternative DUNE far detector technology**

**Dual-phase TPC** is alternative design: vertical drift w/ multiplication and readout at liquid-gas interface Significant R&D by LBNO collaboration

Could be implemented for module(s) 2-4



# **Development and prototyping of LArTPCs**

CERN neutrino platform + FNAL prototyping + experience from FNAL SBN program







# **DUNE** Timeline

- July 2015 "CD-1 Refresh" review (conceptual design review).
- Dec. 2015 CD-3a Conventional Facilities Far Site. Needed to authorize far site conventional facilities work including underground excavation and outfitting.
- 2017 Ongoing shaft renovation at SURF complete.
- 2017 Start of far site conventional facilities construction
- 2018 Testing of "full-scale" far detector elements at CERN.
- 2019 Technical Design review.
- 2021 Ready for start of installation of the first far detector module.
- 2024 start of physics data-taking with one detector module Additional far detector modules every ~2 years.
- 2026 Beam available.
- 2026 Near detector available.
- 2028 DUNE construction finished.

# **DUNE Primary Physics Program**

#### Long-baseline v oscillations

leptonic CP violation mass hierarchy  $\theta_{23}$  octant, precision parameters test of 3-flavor paradigm





#### **Nucleon decay**

particular sensitivity to SUSY-predicted modes e.g.,  $p \to K^+ \overline{\nu}$ 

### Supernova burst neutrinos

neutrino physics & astrophysics, e.g., MH, black hole formation

#### + numerous secondary goals (atmnus, other astro nus, ND physics...)



### Long-baseline neutrino oscillations





# **DUNE** mass hierarchy sensitivity



# **DUNE** mass hierarchy sensitivity vs exposure



(very similar for IH case)

- definitive MH determination
- can get there faster with optimized beam (work underway)

# **DUNE CP violation sensitivity**



optimized beam helps here too

# **DUNE CP violation sensitivity vs exposure**



δ<sub>cp</sub> Resolution

Assumes staging and 2-MW beam after 6 years

# **DUNE octant sensitivity**



Exposure: same as for  $3\sigma$  CP measurement for 75% of values

# **DUNE physics milestones**

## **Best case MH:** 5σ w/ 20-30 kt-MW-yr **Best case CPV (+**π**/2):** 3σ w/ 60-70 kt-MW-yr

| Exposure kt · MW · year<br>(reference beam) | Exposure kt · MW · year<br>(optimized beam)                                                                      |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 70                                          | 45                                                                                                               |
| 70                                          | 60                                                                                                               |
| 160                                         | 100                                                                                                              |
| 280                                         | 210                                                                                                              |
| 400                                         | 230                                                                                                              |
| 450                                         | 290                                                                                                              |
| 525                                         | 320                                                                                                              |
| 810                                         | 550                                                                                                              |
| 1200                                        | 850                                                                                                              |
|                                             |                                                                                                                  |
| 1320                                        | 850                                                                                                              |
|                                             | Exposure kt · MW · year<br>(reference beam)<br>70<br>70<br>160<br>280<br>400<br>400<br>450<br>525<br>810<br>1200 |

# **"Underground" Physics**

#### enabled by overburden

proton decay, atmospheric v's, astrophysical v's,...

# Signal energies and expected rates in LAr

| Signal                              | Energy range | Expected Signal<br>Rate per kton of LAr<br>(yr <sup>-1</sup> kton <sup>-1</sup> ) |
|-------------------------------------|--------------|-----------------------------------------------------------------------------------|
| Proton decay                        | ~ GeV        | < 0.06                                                                            |
| Atmospheric<br>neutrinos            | 0.1-100 GeV  | ~120                                                                              |
| Supernova burst<br>neutrinos        | few-50 MeV   | ~100 @ 10 kpc<br><b>over ~30 secs</b>                                             |
| Solar neutrinos                     | few-15 MeV   | 1300                                                                              |
| Supernova relic<br>neutrinos (DSNB) | 20-50 MeV    | < 0.06                                                                            |

No handy beam trigger, so vulnerable to background, and require attention to triggering

### Mean rate vs event energy





\* @1 kpc, 30 seconds (not steady-state rate)

### Few tens of MeV-scale events: "crummy little stubs'



\* @1 kpc, 30 seconds (not steady-state rate)

# **Baryon Number Violation**



Best limit from SK (1.3 x 10<sup>34</sup> yr, 206 kt-yr); water has high-efficiency, clean signal; LAr should be even cleaner but can't compete easily w/ no. of (free) protons in water (still would see fully-reconstructed events)





...and other modes with low efficiency in water
 → high quality reconstruction & lack of
 Cherenkov threshold enable high efficiency & purity

# Efficiency & background (events per Mton-year) in water & argon:

| Decay Mode                       | Water (    | Cherenkov  | Liquid A   | Argon TPC  |   |
|----------------------------------|------------|------------|------------|------------|---|
| _                                | Efficiency | Background | Efficiency | Background |   |
| $p  ightarrow K^+ \overline{ u}$ | 19%        | 4          | 97%        | 1          | * |
| $p  ightarrow K^0 \mu^+$         | 10%        | 8          | 47%        | < 2        | _ |
| $p  ightarrow K^+ \mu^- \pi^+$   |            |            | 97%        | 1          |   |
| $n  ightarrow K^+ e^-$           | 10%        | 3          | 96%        | < 2        | _ |
| $n  ightarrow e^+ \pi^-$         | 19%        | 2          | 44%        | 0.8        | _ |

\*Dominant bg: sneaky charge-exchanging cosmogenic K<sup>0</sup> High efficiency and low bg in LAr for these modes

## **DUNE Lifetime Sensitivity**



# **Anticipated limits wrt theory predictions**



DUNE 10 yr run

# **Atmospheric Neutrinos**





Wide range of angles and energies, sampling matter with both neutrinos and antineutrinos

| Sample                               | Event Rate | in 350 kt-yr |
|--------------------------------------|------------|--------------|
| fully contained electron-like sample | 14,053     |              |
| fully contained muon-like sample     | 20,853     |              |
| partially contained muon-like sample | 6,871      |              |

#### Again, advantage of LArTPC is precision reconstruction

#### Advantage of LArTPC is precision reconstruction



- better L and E (especially L, from angular resolution)
- potential nu vs nubar separation w/o B field (e.g., proton tag, μdk tag)

350 kt-yr, selected sample of high-resolution events

### Mass hierarchy sensitivity with atmospheric neutrinos



- improves with nu vs nubar tagging
- unlike for beam, MH ~independent of CP  $\delta$
- also: octant, CP info; complementary to beam osc

# **Neutrinos from core collapse**

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with **~tens-of-MeV energies** (Energy *can* escape via v's)

Mostly  $v-\overline{v}$  pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall **∆t~10's** of seconds



#### Expected neutrino luminosity and average energy vs time

### Vast information in the *flavor-energy-time profile*



# Flavor composition as a function of time

# Energy spectra integrated over time



For 40 kton @ 10 kpc, Garching model

| Channel                                                                    | Events            | Events       |
|----------------------------------------------------------------------------|-------------------|--------------|
|                                                                            | "Livermore" model | "GKVM" model |
| $\nu_e + ^{40}\mathrm{Ar} \to e^- + ^{40}\mathrm{K}^*$                     | 2720              | 3350         |
| $\overline{\nu}_e + {}^{40}\mbox{Ar} \rightarrow e^+ + {}^{40}\mbox{Cl}^*$ | 230               | 160          |
| $\nu_x + e^-  ightarrow  u_x + e^-$                                        | 350               | 260          |
| Total                                                                      | 3300              | 3770         |

There is significant model variation

# Can we tag $v_e$ CC interactions in argon using nuclear deexcitation $\gamma$ 's?



20 MeV  $v_e$ , 14.1 MeV e<sup>-</sup>, simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on <sup>40</sup>Ti (<sup>40</sup>K mirror)  $\beta$  decay measurements possible **Direct measurements (and theory) needed!** 

Work underway to understand efficiencies





1-s time slice from Duan model; 100-kt water/ 34-kt LAr (caveat: an illustrative anecdote)





# DUNE collaboration has formed and will operate as an international HEP collaboration

- Parameters: high-power beam FNAL to SD, four 10-kton LAr TPCs (staged)
  - first module will be single-phase, alternative dual-phase design possible for subsequent
- Timeline:
  - Far site construction to start 2017
  - Start physics data-taking w/1<sup>st</sup> module in 2024
  - Beam and ND in 2026
  - Construction finish in 2028
- Physics reach:
  - excellent long-baseline sensitivity: MH, CPV, octant,...
  - unique capabilities for underground physics: supernova burst, proton decay, atmnus,...; highly complementary to water (& scint)

# Extras/backups

| Elect  | ron      |
|--------|----------|
| (anti) | neutrino |
| appe   | arance   |

-

Muon (anti)neutrino disappearance

|                                                   | CDR Reference Design | Optimized Design   |
|---------------------------------------------------|----------------------|--------------------|
| $\nu$ mode (150 kt · MW · year)                   |                      |                    |
| $\nu_e$ Signal NH (IH)                            | 861 (495)            | 945 (521)          |
| $\bar{\nu}_e$ Signal NH (IH)                      | 13 (26)              | 10 (22)            |
| Total Signal NH (IH)                              | 874 (521)            | 955 (543)          |
| $Beam\nu_e + \bar{\nu}_eCCBkgd$                   | 159                  | 204                |
| NC Bkgd                                           | 22                   | 17                 |
| $ u_	au+ar u_	au$ CC Bkgd                         | 42                   | 19                 |
| $ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd                 | 3                    | 3                  |
| Total Bkgd                                        | 226                  | 243                |
| $ar{ u}$ mode (150 kt $\cdot$ MW $\cdot$ year)    |                      |                    |
| $ u_e$ Signal NH (IH)                             | 61 (37)              | 47 (28)            |
| $ar{ u}_e$ Signal NH (IH)                         | 167 (378)            | 168 (436)          |
| Total Signal NH (IH)                              | 228 (415)            | 215 (464)          |
| $Beam\nu_e + \bar{\nu}_eCCBkgd$                   | 89                   | 105                |
| NC Bkgd                                           | 12                   | 9                  |
| $ u_	au+ar u_	au$ CC Bkgd                         | 23                   | 11                 |
| $ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd                 | 2                    | 2                  |
| Total Bkgd                                        | 126                  | 127                |
| <u> </u>                                          | CDR Reference Desig  | n Optimized Desigr |
| $\nu$ mode (150 kt · MW · year)                   |                      |                    |
| $ u_{\mu}$ Signal                                 | 10842                | 7929               |
| $\bar{\nu}_{\mu}$ CC Bkgd                         | 958                  | 511                |
| NC Bkgd                                           | 88                   | 76                 |
| $ u_	au+ar u_	au$ CC Bkgd                         | 63                   | 29                 |
| $\bar{\nu}$ mode (150 kt $\cdot$ MW $\cdot$ year) |                      |                    |
| $ar{ u}_{\mu}$ Signal                             | 3754                 | 2639               |
| $ u_{\mu} \text{ CC Bkgd}$                        | 2598                 | 1525               |
| NC Bkgd                                           | 50                   | 41                 |
| $ u_	au+ar u_	au$ CC Bkgd                         | 39                   | <sup>18</sup> 41   |

#### Sources of backgrounds for the Kaon channels

| Background Source              | Mitigation Strategy              |
|--------------------------------|----------------------------------|
| Internal cosmic ray spallation | Energy threshold                 |
| External cosmogenic            |                                  |
| $K^+$ production               | Depth, fiducialization           |
| External cosmogenic            |                                  |
| $K^0$ production               |                                  |
| +internal charge-exchange      |                                  |
| to $K^+$                       | Cuts on other secondaries        |
| Atmospheric $\nu$              |                                  |
| $\Delta S = 0$ processes       | Cut on associated strange baryon |
| Atmospheric $\nu$              | Cabibbo-suppressed,              |
| $\Delta S = 1$ processes       | lepton ID                        |
| Atmospheric $\nu$              | dE/dx discrimination,            |
| with $\pi$ mis-ID              | 236 MeV muon track               |
| Reconstruction pathologies     | dE/dx profiles vs track length   |

- Year 1: 10 kt far detector mass, 1.07-MW 80-GeV proton beam with 1.47 × 10<sup>21</sup> protons-ontarget per year beam, and no ND
- Year 2: Addition of the second 10-kt far detector module, for a total far detector mass of 20 kt
- Year 3: Addition of the third 10-kt far detector module, for a total far detector mass of 30 kt; and first constraints from the preliminary ND data analysis
- Year 4: Addition of the fourth 10-kt far detector module, for a total far detector mass of 40 kt
- Year 5: Inclusion of constraints from a full ND data analysis
- Year 7: Upgrade of beam power to 2.14 MW for a 80-GeV proton beam

# What can we learn from the next neutrino burst?

#### CORE COLLAPSE PHYSICS



explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI nucleosynthesis

....

from flavor, energy, time structure of burst

input from photon (GW) observations input from neutrino experiments

# $v_e \rightarrow v_\mu$

#### NEUTRINO and OTHER PARTICLE PHYSICS

v absolute mass (not competitive)
v mixing from spectra: flavor conversion in SN/Earth, collective effects
→ mass hierarchy
other v properties: sterile v's, magnetic moment,...
axions, extra dimensions, LIV, FCNC, ...

## + EARLY ALERT

#### Example of supernova burst signal in 34 kton of LAr



assuming Bueno et al. resolution

## **Another anecdote:**

A. Friedland, H. Duan, JJ Cherry, KS

1-sec integrated spectra in 34-kton LAr, few sec apart for 10-kpc SN, NMH



MH-dependent "non-thermal" features clearly visible as shock sweeps through the supernova

## And another:



clearly, there's information in the spectral evolution

## **Events in LAr vs distance**



#### **Resource Loaded Schedule**



#### **Indicative Far Detector Decision Dates**

